No CrossRef data available.
Published online by Cambridge University Press: 21 March 2011
A transparent oxide semiconductor with delafossite structure, CuInO2, was found to exhibit both p-type and n-type conduction by doping of an appropriate impurity and tuning of proper film-deposition conditions. Thin films of Ca-doped or Sn-doped CuInO2 were prepared on -Al2O3 (001) single crystal substrates by pulsed laser deposition method. The films were deposited at 723 K in O2 atmosphere of 1.0 Pa for the Ca-doped films or 1.5 Pa for the Sn-doped films. The positive sign of the Seebeck coefficient demonstrated p-type conduction in the Ca-doped films, while the Seebeck coefficient of the Sn-doped films was negative indicating n-type conductivity. The electrical conductivities of Ca-doped and Sn-doped CuInO2 thin films were 2.8×10−3 S·cm−1 and 3.8×10−3 S·cm−1, respectively, at 300 K. The optical band gap of each film was estimated to be ∼3.9 eV. Since CuInO2 exhibited bipolarity in electrical conduction, transparent p-n homojunctions based on CuInO2 were fabricated on (111) surface of yttria-stabilized zirconia single-crystal substrates. The structure of the diode was In2O3:Sn / n-CuInO2:Sn / p-CuInO2:Ca / In2O3:Sn electrode on the substrate. The contact between the n-and p-type CuInO2 semiconducting oxides was found to be rectifying. The turn-on voltage was ∼1.8 V.