Published online by Cambridge University Press: 17 March 2011
Block copolymer-based membranes can be functionalized with energy transducing proteins to reveal a versatile family of nanoscale materials. Our work has demonstrated the fabrication of protein-functionalized ABA triblock copolymer nanovesicles that possess a broad applicability towards areas like biosensing and energy production. ABA triblock copolymers possess certain advantages over lipid systems. For example, they can mimic biomembrane environments necessary for membrane protein refolding in a single chain (hydrophilic(A)- hydrophobic(B)-hydrophilic(A)), enabling large-area membrane fabrication using methods like Langmuir-Blodgett (LB) deposition. Furthermore, the robustness of the polymer molecules/structure result in spontaneous and rapid protein-functionalized nano-vesicle formation that retains structure as well as protein functionality for up to several months, compared to one to two weeks for the lipid systems (e.g. POPC). The membrane protein, Bacteriorhodopsin (BR), found in Halobacterium Halobium, is a light-actuated proton pump that develops gradients towards the demonstration of coupled functionality with other membrane proteins, such as the production of electricity through Bacteriorhodopsin activity-dependent reversal of Cytochrome C Oxidase (COX), found in Rhodobacter Sphaeroides. Protein-functionalized materials have the exciting potential of serving as the core technology behind a series of fieldable devices that are driven completely by biomolecules.