Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2025-01-06T05:32:26.416Z Has data issue: false hasContentIssue false

Blue and Yellow Luminescence in ZnO Films Grown by Peroxide MBE

Published online by Cambridge University Press:  01 February 2011

Vitaliy Avrutin
Affiliation:
vavrutin@vcu.edu, Virginia Commonwealth University, Electrical Engineering, 601 West Main St., Richmond, VA, 23284, United States, (804) 827 7000 ext. 357, (804) 828 4269
Mikhail A. Reshchikov
Affiliation:
mreshchi@vcu.edu, Virginia Commonwealth University, Physics, 1020 West Main St., Richmond, VA, 23284, United States
Natalia Izyumskaya
Affiliation:
nizioumskaia@vcu.edu, Virginia Commonwealth University, Electrical Engineering, 601 West Main St., Richmond, VA, 23284, United States
Ryoko Shimada
Affiliation:
rshimada@vcu.edu, Virginia Commonwealth University, Electrical Engineering, 601 West Main St., Richmond, VA, 23284, United States
Hadis Morkoç
Affiliation:
hmorkoc@vcu.edu, Virginia Commonwealth University, Electrical Engineering, 601 West Main St., Richmond, VA, 23284, United States
Get access

Abstract

We observed strong shifts of the blue and yellow luminescence bands with variation of excitation intensity in ZnO films grown on sapphire by MBE using hydrogen peroxide as a source of reactive oxygen. The blue band, having a maximum in the range from 2.85 to 3.15 eV in different samples and different excitation intensities at 10 K, is attributed to diagonal transitions from the conduction band (or shallow donors) to the valence band in realm of potential fluctuations caused by random distribution of charged point defects in a compensated semiconductor. The yellow band is related to an unidentified deep acceptor.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Äzgür, Ü., Alivov, Ya. I., Liu, C., Teke, A., Reshchikov, M. A., Dogan, S., Avrutin, V., Cho, S.-J., and Morkoç, H., J. Appl. Phys. 98, 041301 (2005).10.1063/1.1992666Google Scholar
2. Monteiro, T., Neves, A. J., Carmo, M. C., Soares, M. J., Peres, M., Wang, J., Alves, E., Rita, E., and Wahl, U., J. Appl. Phys. 98, 013502 (2005).10.1063/1.1946200Google Scholar
3. Brillson, L. J., Mosbacker, H. L., Hetzer, M. J., Strzhemechny, Y., Jessen, G. H., Look, D. C., Cantwell, G., Zhang, J., and J, J.. Song, Appl. Phys. Lett. 90, 102116 (2007).10.1063/1.2711536Google Scholar
4. Kumar, B., Gong, H., Vicknesh, S., Chua, S. J., and Tripathy, S., Appl. Phys. Lett. 89, 141901 (2006).Google Scholar
5. Fang, Z., Wang, Y., Xu, D., Tan, Y., and Liu, X., Optical Materials 26, 239 (2004).Google Scholar
6. Lin, Y.-J., Tsai, C.-L., Lu, Y.-M., and Liu, C.-J., J. Appl. Phys. 99, 093501 (2006).10.1063/1.2193649Google Scholar
7. Liu, C. Y., Zhang, B. P., Binh, N. T., Wakatsuki, K., and Segawa, Y., J. Cryst. Growth 290, 314 (2006).Google Scholar
8. Fenwick, W. E., Woods, V. T., Pan, M., Li, N., Kane, M. H., Gupta, S., Rengarajan, V., Nause, J., and Ferguson, I. T., Mater. Res. Soc. Symp. Proc. 892, FF18 (2006).Google Scholar
9. Xiu, F. X., Yang, Z., Mandalapu, L. J., Zhao, D. T., and Liu, J. L., Appl. Phys. Lett. 87, 252102 (2005).Google Scholar
10. Cao, B., Cai, W., and Zeng, H., Appl. Phys. Lett. 88, 161101 (2006).Google Scholar
11. Zeng, H., Cai, W., Hu, J., Duan, G., Liu, P., and Li, Y., Appl. Phys. Lett. 88, 17190 (2006).Google Scholar
12. Reshchikov, M. A., Avrutin, V., Izyumskaya, N., Shimada, R., and Morkoç, H., Physica B 401–402, 374 (2007).10.1016/j.physb.2007.08.191Google Scholar
13. Reshchikov, M. A. and Morkoç, H., J. Appl. Phys. 97, 061301 (2005).10.1063/1.1868059Google Scholar
14. Levanyuk, A. P. and Osipov, V. V., Usp. Fiz. Nauk 133, 427 (1981) [Sov. Phys. Usp. 24, 187 (1981)].10.3367/UFNr.0133.198103b.0427Google Scholar
15. Zacks, E. and Halperin, A., Phys. Rev. B 6, 3072 (1972).10.1103/PhysRevB.6.3072Google Scholar
16. Reshchikov, M. A., Yi, G.-C., and Wessels, B. W., Phys. Rev. B 59, 13176 (1999).10.1103/PhysRevB.59.13176Google Scholar
17. Reshchikov, M. A., Shahedipour, F., Korotkov, R. Y., Ulmer, M. P., and Wessels, B. W., J. Appl. Phys. 87, 3351 (2000).10.1063/1.372348Google Scholar
18. Shklovskii, B. I. and Efros, A. L., Electronic Properties of Doped Semiconductors (Springer, Berlin, 1984).10.1007/978-3-662-02403-4Google Scholar
19. Yu, P. W., J. Appl. Phys. 48, 5043 (1978).10.1063/1.323631Google Scholar
20. Bäume, P., Gutowski, J., Wiesmann, D., Heitz, R., Hoffmann, A., Kurtz, E., Hommel, D., and Landwehr, G., Appl. Phys. Lett. 67, 1914 (1995).Google Scholar
21. Gislason, H. P., Yang, B. H., and Linnarsson, M., Phys. Rev. B 47, 9418 (1993).10.1103/PhysRevB.47.9418Google Scholar
22. Reshchikov, M. A., Xie, J., Hertog, B., and Osinsky, A., Mater. Res. Soc. Symp. Proc. ???, L13.12 (2008).Google Scholar