Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-15T06:39:32.275Z Has data issue: false hasContentIssue false

Bond-Order Potentials for Molybdenum and Niobium: An Assessment of Their Quality

Published online by Cambridge University Press:  10 February 2011

M. Mrovec
Affiliation:
Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA 19104-6272, U. S. A.
V. Vitek
Affiliation:
Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA 19104-6272, U. S. A.
D. Nguyen-Manh
Affiliation:
Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, U. K.
D. G. Pettifor
Affiliation:
Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, U. K.
L. G. Wang
Affiliation:
Institute of Physics of Materials, Academy of Sciences of the Czech Republic, Zizkova 22, Brno, Czech Republic.
M. Sob
Affiliation:
Institute of Physics of Materials, Academy of Sciences of the Czech Republic, Zizkova 22, Brno, Czech Republic.
Get access

Abstract

The bond-order potentials (BOP) have been constructed for Mo and Nb. These potentials are based on the real-space parametrized tight-binding method in which diagonalization of the Hamiltonian is avoided by direct calculation of the bond-order. In this scheme the energy consists of three parts: The bond part that comprises contributions of d electrons and introduces into the scheme the covalent character of bonding, the central-force many-body part that reflects the environmental dependence of sp overlap repulsion and a pair-wise contribution. The potentials were tested by calculation of energy differences between the bcc and several alternate structures and by investigating the trigonal deformation path. These calculations have been made in parallel using BOP and the full-potential linearized augmented plane-wave method. The central-force many-body Finnis-Sinclair type potentials have also been included into the study of the deformation path. This evaluation of BOP reveals that the potentials reproduce very closely the ab initio results and are, therefore, very suitable for atomistic studies of extended defects in the transition metals.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Vitek, V., Crystal Lattice Defects 5, 1 (1975).Google Scholar
2. Duesbery, M. S., Dislocations in Solids, edited by Nabarro, F. R. N. (Amsterdam, North Holland), Vol. 8, p. 67 (1989).Google Scholar
3. Duesbery, M. S. and Richardson, G. Y., CRC Critical Reviews in Solid State and Materials Science 17, 1 (1991).Google Scholar
4. Vitek, V., Prog. Mater. Sci. 36, 1 (1992).Google Scholar
5. Duesbery, M. S. and Vitek, V., Acta Mater. 46, 1481 (1998).Google Scholar
6. Hirth, J. P. and Lothe, J., Theory of Dislocations, (Wiley-Interscience, New York, 1982).Google Scholar
7. Vitek, V., Stability of Materials: NATO Advanced Science Institute, edited by Gonis, A., Turchi, P. E. A. and Kudmovsky, J. (New York, Plenum Press), p. 53 (1996).Google Scholar
8. Vitek, V., Perrin, R. C. and Bowen, D. K., Philos. Mag. A 21, 1049 (1970).Google Scholar
9. Basinski, Z. S., Duesberry, M. S. and Taylor, R., Can. J. Phys. 49, 2160 (1971).Google Scholar
10. Xu, W. and Moriarty, J. A., Phys. Rev. B 54, 6941 (1996).Google Scholar
11. Xu, W. and Moriarty, J. A., Comp. Mat. Sci. 9, 348 (1998).Google Scholar
12. Yang, L. H., Xu, W. and Moriarty, J. A., Multiscale Modeling of Materials, edited by Bulatov, V., Ghoniem, N., Rubia, T. Diaz de la and Kaxiras, T. (Pittsburgh, Materials Research Society), this volume (1999).Google Scholar
13. Campbell, G. H., King, W. E., Foiles, S. M., Gumbsch, P. and Ruhle, M., Structure and Properties of Interfaces in Materials, edited by Clark, W. A. T., Dahmen, U. and Briant, C. L. (Pittsburgh, Materials Research Society), Vol. 238, p. 163 (1992).Google Scholar
14. Moriarty, J. A., Many-Atom Interactions in Solids, edited by Nieminen, R. M., Puska, M. J. and Manninen, M. J. (Berlin, Springer), Vol. 48, p. 158 (1990).Google Scholar
15. Ochs, T., Beck, O., Elsaesser, C. and Meyer, B., Philos. Mag. A, to be published (1999).Google Scholar
16. Pettifor, D. G., Physical Metallurgy, edited by Cahn, R. W. and Haasen, P. (Amsterdam, Elsevier), p. 147 (1983).Google Scholar
17. Pettifor, D. G., Bonding and Structure of Molecules and Solids, (Oxford University Press, Oxford, 1995).Google Scholar
18. Pettifor, D. G., Phys. Rev. Lett. 63, 2480 (1989).Google Scholar
19. Aoki, M., Phys. Rev. Lett. 71, 3842 (1993).Google Scholar
20. Aoki, M. and Pettifor, D. G., Mat. Sci. Eng. A 176, 19 (1994).Google Scholar
21. Horsfield, A. P., Bratkovsky, A. M., Fearn, M., Pettifor, D. G. and Aoki, M., Phys. Rev. B 53, 12694 (1996).Google Scholar
22. Horsfield, A. P., Bratkovsky, A. M., Pettifor, D. G. and Aoki, M., Phys. Rev. B 53, 1656 (1996).Google Scholar
23. Bowler, D. R., Aoki, M., Goringe, C. M., Horsfield, A. P. and Pettifor, D. G., Modelling and Simulation in Mat. Sci. Eng. 5, 199 (1997).Google Scholar
24. Blaha, P., Schwartz, K., Sorantin, P. and Trickey, S. B., Comp. Phys. Commun. 59, 399 (1990).Google Scholar
25. Blaha, P., Schwartz, K., Dufek, P. and Augustyn, R., Wien 95, (Technical University of Vienna, 1995).Google Scholar
26. Finnis, M. W. and Sinclair, J. E., Philos. Mag. A 50, 45 (1984).Google Scholar
27. Ackland, G. J. and Thetford, R., Philos. Mag. A 56, 15 (1987).Google Scholar
28. Girshick, A., Bratkovsky, A. M., Pettifor, D. G. and Vitek, V., Philos. Mag. A 77, 981 (1998).Google Scholar
29. Andersen, O. K., Jepsen, O. and Glötzel, D., Highlights of Condensed Matter Theory, edited by Bassani, F., Fumi, F. and Tosi, M. P. (Amsterdam, North Holland), p. 59 (1985).Google Scholar
30. Slater, J. C. and Koster, G. F., Physical Review 94, 1498 (1954).Google Scholar
31. Nguyen-Manh, D., Pettifor, D. G., Znam, S. and Vitek, V., Tight-Binding Approach to Computational Materials Science, edited by Turchi, P. E. A., Gonis, A. and Colombo, L. (Pittsburgh, Materials Research Society), Vol. 491, p. 353 (1998).Google Scholar
32. Milstein, F., Fang, H. E. and Marschall, J., Philos. Mag. A 70, 621 (1994).Google Scholar
33. Sob, M., Wang, L. G. and Vitek, V., Comp. Mat. Sci. 8, 100 (1997).Google Scholar
34. Sob, M., Turek, I. and Vitek, V., Tight-Binding Approach to Computational Materials Science, edited by Turchi, P. E. A., Gonis, A. and Colombo, L. (Pittsburgh, Materials Research Society), Vol. 491, p. 79 (1998).Google Scholar