Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-15T01:02:57.015Z Has data issue: false hasContentIssue false

Capturing the Cumulative Effect in the Pump Probe Transient Thermoreflectance Technique using Network Identification by Deconvolution Method

Published online by Cambridge University Press:  17 October 2011

Y. Ezzahri*
Affiliation:
Institut Pprime, CNRS-Université de Poitiers-ENSMA, Département Fluides, Thermique, Combustion, ENSIP-Bâtiment de mécanique, 2 rue Pierre Brousse, F 86022 Poitiers, Cedex, France.
G. Pernot
Affiliation:
Department of Electrical Engineering, University of California at Santa Cruz, 1156 High street, Santa Cruz, California, 95064, USA.
K. Joulain
Affiliation:
Institut Pprime, CNRS-Université de Poitiers-ENSMA, Département Fluides, Thermique, Combustion, ENSIP-Bâtiment de mécanique, 2 rue Pierre Brousse, F 86022 Poitiers, Cedex, France.
A. Shakouri
Affiliation:
Department of Electrical Engineering, University of California at Santa Cruz, 1156 High street, Santa Cruz, California, 95064, USA.
Get access

Abstract

Network Identification by Deconvolution (NID) method is used to capture the heat cumulative effect in the homodyne configuration of the Pump-Probe Transient Thermoreflectance (PPTTR) experiment. This cumulative effect is very important in the interpretation of the PPTTR which is becoming widely used for the extraction of thin film thermal conductivity. We show that this intrinsic behavior can be introduced as a cumulative effect weight function in the time constant spectrum of the structure under study. We show how the main features of this weight function change when we change the laser repetition rate and/or the laser pump beam modulation frequency, and how these changes may affect the extraction of the thermal properties of the sample under study, particularly the thermal conductivity and the interface thermal resistance. Numerical simulations of the PPTTR experiment are used to validate the application of NID method. Limitations of the method will also be discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Paddock, C. A., and Eesley, G. L., J. Appl. Phys, 60, 285 (1986).Google Scholar
2. Cahill, D. G., Ford, W. K., Goodson, K. E., Mahan, G. D., Majumdar, A., Maris, H. J., Merlin, R., and Phillpot, S. R.. J. Appl. Phys, 93, 793 (2003).Google Scholar
3. Schmidt, A., Chiesa, M., Chen, X. and Chen, G., Rev. Sci. Instrum, 79, 064902 (2008).Google Scholar
4. Cahill, D. G., Rev. Sci. Instrum, 61, 802 (1990).Google Scholar
5. Ezzahri, Y., Grauby, S., Dilhaire, S., Rampnoux, J. M., and Claeys, W., J. Appl. Phys, 101, 013705 (2007).Google Scholar
6. Dilhaire, S., Claeys, W., Rampnoux, J.M, and Rossignol, C., “Optical Heterodyne Sampling Device”, Patent, WO/2007/045773 (2007).Google Scholar
7. Capinski, W. S. and Maris, H. J., Rev. Sci. Instrum, 67, 2720 (1996).Google Scholar
8. Cahill, D. G., Rev. Sci. Instrum, 75, 5119 (2004).Google Scholar
9. Schmidt, A. J., Chen, X. and Chen, G., Rev. Sci. Instrum, 79, 114902 (2008).Google Scholar
10. Ezzahri, Y. and Shakouri, A., Rev. Sci. Instrum, 80, 074903 (2009).Google Scholar
11. Stevens, R. J., Smith, A. N. and Norris, P. M., Rev. Sci. Instrum, 77, 084901 (2006).Google Scholar
12. Székely, V. and Bien, T. V., Solid-State Electronics, 31, 1363 (1988).Google Scholar
13. Maillet, D., André, S., Batsale, J. C., Degiovanni, A., and Moyne, C., Thermal Quadrupoles: Solving the Heat Equation Through Integral Transforms Wiley, Chichester, West Sussex, UK, 2000.Google Scholar
14. Koh, Y. K. and Cahill, D. G., Phys. Rev. B, 76, 075207 (2007).Google Scholar