Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-15T07:04:33.301Z Has data issue: false hasContentIssue false

Carbon Incorporation in Si1-yCy Alloys Grown by Ultrahigh Vacuum Chemical Vapor Deposition

Published online by Cambridge University Press:  10 February 2011

A. C. Mocuta
Affiliation:
Department of Electrical and Computer Engineering, Carnegie Mellon university, Pittsburgh, PA 15213
D. W. Greve
Affiliation:
Department of Electrical and Computer Engineering, Carnegie Mellon university, Pittsburgh, PA 15213
Get access

Abstract

Thin heteroepitaxial Si1-yCy films have been grown on Si (100) by Ultrahigh Vacuum Chemical Vapor Deposition (UHV/CVD) using silane and methylsilane as silicon and carbon precursors. Carbon incorporation has been studied in the growth temperature range of 550°C to 650°C. The layers have been characterized using high resolution X-ray diffraction and secondary ion mass spectrometry. The total carbon content of the alloys increases linearly with the methylsilane partial pressure and a methylsilane sticking coefficient approximately 2 times higher than that of silane was extracted. Layers with up to 1.34 % substitutional carbon have been obtained at the lowest growth temperature. Fully substitutional carbon can be obtained for levels up to 0.65%. Variations of the growth rate with temperature and carbon content are also discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Brunner, K., Eberl, K. and Winter, W., Phys. Rev. Lett. 76, 303 (1996)Google Scholar
2. Davis, G. and Newmann, R. C. in Handbook of Semiconductors, 2nd edition (1994) vol.3Google Scholar
3. Olesinski, R. W. and Abbaschian, G. J., Bull. Alloy Phase Diagrams, 5, 486 (1984)Google Scholar
4. Iyer, S. S., Eberl, K., Goorski, M. S., LeGoues, F. K., Tsang, J. C. and Cardone, F., Appl. Phys. Lett. 60, 356 (1992)Google Scholar
5. Osten, H. J., Kim, M., Pressel, K. and Zaumseil, P., J. Appl. Phys. 80, 6711 (1996)Google Scholar
6. Boucaud, P., Francis, C., Larre, A., Julien, F.H., Lourtioz, J.M., Bouchier, D., Bodnar, S. and Regolini, J. L., Appl. Phys. Lett. 66, 70 (1995)Google Scholar
7. Strane, J. W., Stein, H. J., Lee, S. R., Doyle, B. L., Picraux, S. T. and Mayer, J. W., Appl. Phys. Lett. 63, 2786 (1993)Google Scholar
8. Mitchell, T. O., Hoyt, J. L. and Gibbons, J. F., Appl. Phys. Lett. 71, 1688 (1997)Google Scholar
9. Tersoff, J., Phys. Rev. Lett., 74, 5080 (1995)Google Scholar
10. Kelires, P. C. and Tersoff, J., Phys. Rev. Lett., 63, 1164 (1989)Google Scholar
11. Greve, D. W. and Racanelli, M., J. Vac. Sci. Tech. B 8, 511 (1990)Google Scholar
12. Racanelli, M., Greve, D. W., Hatalis, M. K. and van Yzendoorn, L. J., J. Electrochem. Soc. 138, 3783 (1992)Google Scholar
13. Greve, D. W., Mater. Sci. Eng., B 18, 22 (1993)Google Scholar