Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-28T17:15:40.074Z Has data issue: false hasContentIssue false

Carbon Nanotube-Perovskite-Composites as New Electrode Material

Published online by Cambridge University Press:  01 February 2011

Anke Weidenkaff
Affiliation:
Solid State Chemistry, University of Augsburg, D-86159 Augsburg, Germany
Stefan G. Ebbinghaus
Affiliation:
Solid State Chemistry, University of Augsburg, D-86159 Augsburg, Germany
Thomas Lippert
Affiliation:
Dept. General Energy Research, Paul Scherrer Institute, CH-5232 Villigen, Switzerland
Macarena J. Montenegro
Affiliation:
Dept. General Energy Research, Paul Scherrer Institute, CH-5232 Villigen, Switzerland
Armin Reller
Affiliation:
Solid State Chemistry, University of Augsburg, D-86159 Augsburg, Germany
Get access

Abstract

In this paper we describe the synthesis and characterisation of La1-xAxCoO3 (A=Ca, Sr) (0 < x < 0,5) of different morphologies using pulsed laser deposition, ceramic methods and alternative soft-chemistry techniques. Furthermore the potential use of a La1-xCaxCoO3/carbon nanotube composite material for oxygen electrodes is discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Hermann, V., Dutriat, D., Müller, S., and Comninellis, Ch., Electrochimica Acta, 46, 365372, (2000).Google Scholar
2. Martinez-Juarez, A., Sanchez, L., Chinarro, E., Recio, P., Pascual, C., and Jurado, J. R., Solid State Ionics, 135, 525528, (2000).Google Scholar
3. McEvoy, A. J., J. Mater. Sci., 36, 10871091, 2001.Google Scholar
4. Ohno, Y., Nagata, S., and Sato, H., Solid State Ionics, 9&10, 10011008, (1983).Google Scholar
5. Müller, S., Striebel, K., and Haas, O., Electrochimica Acta, 39, 16611668, (1994).Google Scholar
6. Bursell, M., Pirjamali, M., and Kiros, Y., Electrochimica Acta, 47, 16511660, (2002).Google Scholar
7. Montenegro, M. J., Lippert, T., Müller, S., Weidenkaff, A., Willmott, P. R., and Wokaun, A., Appl. Surf. Science, in press (2002).Google Scholar
8. Weidenkaff, A., Ebbinghaus, S., and Lippert, T., Chem.Mater., in press (2002).Google Scholar
9. Baythoun, M. S. G. and Sale, F. R., J. Mater. Sci., 17, 27572769, (1982).Google Scholar
10. Teraoka, Y., Kakebayashi, H., Moriguchi, I., and Kagawa, S., Chemistry Letters, 673676, (1991).Google Scholar
11. Montenegro, M. J., Lippert, T., Müller, S., Weidenkaff, A., Willmott, P. R., and Wokaun, A., Phys.Chem.Chem.Phys., in press (2002).Google Scholar
12. Weidenkaff, A., Ebbinghaus, S., Mauron, P., Reller, A., Zhang, Y., and Züttel, A., Materials Science and Engineering C, 19, 119123, (2001).Google Scholar
13. Baiker, A., Marti, P. E., Keusch, P., Fritsch, E., and Reller, A., J. Catal., 146, 268276, (1994).Google Scholar
14. Doorn, R. H. E. van and Burggraaf, A. J., Solid State Ionics, 128, 6578, (2002).Google Scholar
15. Ebbinghaus, S. G., Weidenkaff, A., and Cava, R. J., J.Solid State Chemistry, in press (2002).Google Scholar