Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2025-01-02T21:30:52.126Z Has data issue: false hasContentIssue false

Carrier drift-mobilities and solar cell models for amorphous and nanocrystalline silicon

Published online by Cambridge University Press:  31 January 2011

Eric A Schiff*
Affiliation:
easchiff@syr.edu, Syracuse University, Physics, 201 Physics Building, Syracuse, New York, 13244-1130, United States, 315-443-3901
Get access

Abstract

Hole drift mobilities in hydrogenated amorphous silicon (a-Si:H) and nanocrystalline silicon (nc-Si:H) are in the range of 10-3 to 1 cm2/Vs at room-temperature. These low drift mobilities establish corresponding hole mobility limits to the power generation and useful thicknesses of the solar cells. The properties of as-deposited a-Si:H nip solar cells are close to their hole mobility limit, but the corresponding limit has not been examined for nc-Si:H solar cells. We explore the predictions for nc-Si:H solar cells based on parameters and values estimated from hole drift-mobility and related measurements. The indicate that the hole mobility limit for nc-Si:H cells corresponds to an optimum intrinsic-layer thickness of 2-3 μm, whereas the best nc-Si:H solar cells (10% conversion efficiency) have thicknesses around 2 μm.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Green, M. A. Silicon Solar Cells: Advanced Principles & Practice (University of New South Wales, Sydney, 1995).Google Scholar
2 Schiff, E. A. Solar Energy Materials and Solar Cells 78, 567(2003).Google Scholar
3 Zhu, K. Yang, J. Wang, W. Schiff, E. A. Liang, J. and Guha, S. in Amorphous and Nanocrystalline Silicon Based Films — 2003, edited by Abelson, J.R. Ganguly, G. Matsumura, H. Robertson, J. Schiff, E. A. (Materials Research Society Symposium Proceedings Vol. 762, Pittsburgh, 2003), pp. 297302.Google Scholar
4 Liang, Jianjun, Schiff, E. A. Guha, S. Yan, Baojie, and Yang, J. Appl. Phys. Lett. 88 063512063514 (2006).Google Scholar
5 Goodman, A. M. and Rose, A. J. Appl. Phys. 42, 2823(1971).Google Scholar
6 Crandall, R. S. J. Appl. Phys. 55, 4418(1984).Google Scholar
7 Mihailetchi, V. D. Wildeman, J. and Blom, P. W. M., Phys. Rev. Lett. 94, 126602(2005).Google Scholar
8 Schiff, E. A. J. Phys.: Condens. Matter 16, S52655275 (2004).Google Scholar
9 Wang, Qi, Antoniadis, Homer, Schiff, E. A. and Guha, S. Phys. Rev. B 47, 9435(1993).Google Scholar
10 Schiff, E. A. J. Non-Cryst. Solids 352, 1087(2006).Google Scholar
11 Deng, X. and Schiff, E. A. in Handbook of Photovoltaic Science and Engineering, Antonio Luque and Steven Hegedus, editors (John Wiley & Sons, Chichester, 2003), pp. 505565.Google Scholar
12 Mai, Y. Klein, S. Geng, X. Hulsbeck, M. Carius, R. and Finger, F. Thin Solid Films 501, 272(2006).Google Scholar
13 Mai, Y. Klein, S. Carius, R. Wolff, J. Lambertz, A. and Finger, F. J. Appl. Phys. 97, 114913(2005).Google Scholar
14 Bailat, J. Domine, D. Schluchter, R. Steinhauser, J. Fay, S. Freitas, F. Bucher, C. Feitknecht, L. Niquille, X. Tscharner, T. Shah, A. Ballif, C. in Conference Record of the 2006 IEEE 4th World Conference on Photovoltaic Energy Conversion, Vol. 2 (IEEE, 2006), p. 1533.Google Scholar
15 Nath, M. Roci, P. Cabarrocas, I, Johnson, E. V. Abramov, A. Chatterjee, P. Thin Solid Films 516, 69746978 (2008).Google Scholar
16 Pieters, B. Stiebig, H. Zeman, M. and Swaaij, R. A. C. M. M. van, J. Appl. Phys. 105, 044502(2009).Google Scholar
17 Dylla, T. Finger, F. and Schiff, E. A. Appl. Phys. Lett. 87, 032103032105 (2005).Google Scholar
18 Dylla, T. Reynolds, S. Carius, R. Finger, F. J. Non-Cryst. Solids 352, 10931096 (2006). Note that these authors use the L = d definition of the drift-mobility (see [29]).Google Scholar
19 Schiff, E. A. Phil. Mag. B, in press.Google Scholar
20 Juŝka, G., Viliunas, M. Arlauskas, K. Stuchlik, J. and Koèka, J., Phys. Stat. Sol. (a) 171, 539(1999).Google Scholar
21 Juŝka, G., Arlauskas, K. Stuchlik, J. and Isterbacka, J. J. Non-Cryst. Solids 352, 1167(2006).Google Scholar
22 Droz, C. Goerlitzer, M. Wyrsch, N. and Shah, A. J. Non-Cryst. Solids 266–269, 319(2000).Google Scholar
23 Schwarz, R. Sanguino, P. Klynov, S. Fernandes, M. Macarico, F. Louro, P. and Vieira, M. Mat. Res. Soc. Symp. Proc. Vol. 609, A32.4.1 (2000).Google Scholar
24 Okur, S. Gunes, M. Finger, F. and Carius, R. Thin Solid Films 501, 137(2006).Google Scholar
25 Reynolds, S. Smimov, V. Main, C. Finger, F. and Carius, R. in Mat. Res. Soc. Symp. Proc. Vol. 808 (Materials Research Society, Pittsburgh, 2004), p. A.5.7.1.Google Scholar
26The temperature-dependence of the bandgap for a-Si:H is -0.47 meV/K [4]. For nc-Si:H we've used the value for c-Si, which is -0.27 meV/K near room-temperature; see Weber, J. in Properties of Crystalline Silicon, Hull, R. ed., Institution of Engineering and Technology, Stevenage, 1999, pp. 391393.Google Scholar
27 Saripalli, S. Sharma, P. Reusswig, P. Dalal, V. J. Non-Cryst. Solids 354, 2426(2008).Google Scholar
28 Yan, B. Yue, G. Yang, J. Guha, S. Williamson, D. L. Han, D. and Jiang, C.S. Appl. Phys. Lett. 85, 1955(2004).Google Scholar
29Most experimental papers cited here calculate the drift-mobility assuming that the mean displacement L at the transit-time is half the sample thickness d (L = d/2) [9]. Some experimenters use the older expression L = d (cf. [18]), which yields mobilities that are twice as large.Google Scholar
30This expression in square brackets differs slightly from eq. (4) of ref. [8] because that reference implicitly assumed that the product NVbT is temperature-independent. This assumption requires that the temperature-dependence of bT compensates that of NV, which seems arbitrary. The fittings to drift-mobilities are not substantially affected; this can be seen in Fig. 6, where the fitting Zhu03 seems satisfactory with the original parameters.Google Scholar
31 Dinca, S. Ganguly, G. Lu, Z. Schiff, E. A. Vlahos, V. Wronski, C. R. Yuan, Q. in Amorphous and Nanocrystalline Silicon Based Films-2003, edited by Abelson, J.R. Ganguly, G. Matsumura, H. Robertson, J. Schiff, E. A. (Materials Research Society Symposium Proceedings Vol. 762, Pittsburgh, 2003), pp. 345350.Google Scholar
32 Schiff, E. A. Phys. Rev. B 24, pp. 6189 (1981).Google Scholar
33 Gu, Q. Schiff, E. A. Grebner, S. Wang, F. and Schwarz, R. Phys. Rev. Lett. 76, 3196(1996).Google Scholar