Hostname: page-component-5f745c7db-tvc9f Total loading time: 0 Render date: 2025-01-06T07:13:03.076Z Has data issue: true hasContentIssue false

Carrier Recombination, Relaxation, and Transport Dynamics in InN

Published online by Cambridge University Press:  01 February 2011

Fei Chen
Affiliation:
feichen@acsu.buffalo.edu
Alexander N Cartwright
Affiliation:
anc@buffalo.edu
Hai Lu
Affiliation:
hl255@cornell.edu
William J Schaff
Affiliation:
schaff@iiiv.tn.cornell.edu
Get access

Abstract

Knowledge of the carrier recombination, relaxation, and transport processes in InN materials is essential for determining the applicability of this material system in photonic and electronic applications. In this article, we provide a review of time-resolved spectroscopy experimental techniques and our recent results using these techniques to measure transient processes in InN. Specifically, subpicosecond differential transmission experiments were used to determine the carrier recombination lifetime and the carrier thermalization time of InN. In those experiments, we observed a fast initial hot carrier cooling followed by a slower recombination process. At short times after pulsed excitation, modeling of the observed relaxation suggests that the dominant energy relaxation process is longitudinal optical phonon scattering modified by a strong hot phonon effect at room temperature. An inverse proportionality between the carrier lifetime and the free electron concentration was found. This suggests that donor-like defects or impurities may stimulate the formation of non-radiative recombination centers. Furthermore, we report the measurements of in-plane carrier transport and hole mobility of an InN epilayer by time-resolved transient grating spectroscopy using subpicosecond pulses at 800 nm and ∼1900 nm for grating writing and probing, respectively. The ambipolar diffusion coefficient Da = 2.0 cm2/s and hole mobility µh = 39 cm2/Vs at 300 K near the InN surface were determined by monitoring the transient grating kinetics at various grating periods.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Bellotti, E., Doshi, B. K., Brennan, K. F., Albrecht, J. D., Ruden, P. P., Journal of Applied Physics 85, 916 (1999).CrossRefGoogle Scholar
2. O'Leary, S. K., Foutz, B. E., Shur, M. S., Bhapkar, U. V., Eastman, L. F., Journal of Applied Physics 83, 826 (1998).CrossRefGoogle Scholar
3. Bhuiyan, A. G., Sugita, K., Kasashima, K., Hashimoto, A., Yamamoto, A., Davydov, V. Y., Applied Physics Letters 83, 4788 (2003).CrossRefGoogle Scholar
4. Davydov, V. Y., Klochikhin, A. A., Seisyan, R. P., Emtsev, V. V., Ivanov, S. V., Bechstedt, F., Furthmuller, J., Harima, H., Mudryi, V., Aderhold, J., Semchinova, O., Graul, J., Physica Status Solidi B-Basic Research 229, R1 (2002).3.0.CO;2-O>CrossRef3.0.CO;2-O>Google Scholar
5. Inushima, T., Mamutin, V. V., Vekshin, V. A., Ivanov, S. V., Sakon, T., Motokawa, M., Ohoya, S., Journal of Crystal Growth 227, 481 (2001).CrossRefGoogle Scholar
6. Wu, J., Walukiewicz, W., Yu, K. M., Ager, J. W., Haller, E. E., Lu, H., Schaff, W. J., Saito, Y., Nanishi, Y., Applied Physics Letters 80, 3967 (2002).CrossRefGoogle Scholar
7. Kurimoto, E., Harima, H., Hashimoto, A., Yamamoto, A., Physica Status Solidi B-Basic Research 228, 1 (2001).3.0.CO;2-U>CrossRef3.0.CO;2-U>Google Scholar
8. Yamamoto, A., Tanaka, T., Koide, K., Hashimoto, A., Physica Status Solidi a-Applied Research 194, 510 (2002).3.0.CO;2-6>CrossRef3.0.CO;2-6>Google Scholar
9. Lu, H., Schaff, W. J., Hwang, J., Wu, H., Yeo, W., Pharkya, A., Eastman, L. F., Applied Physics Letters 77, 2548 (2000).CrossRefGoogle Scholar
10. Lu, H., Schaff, W. J., Eastman, L. F., Wu, J., Walukiewicz, W., Cimalla, V., Ambacher, O., Applied Physics Letters 83, 1136 (2003).CrossRefGoogle Scholar
11. Chang, Y. M., Chuang, C. T., Chia, C. T., Tsen, K. T., Lu, H., Schaff, W. J., Applied Physics Letters 85, 5224 (2004).CrossRefGoogle Scholar
12. Intartaglia, R., Maleyre, B., Ruffenach, S., Briot, O., Taliercio, T., Gil, B., Applied Physics Letters 86, 142104 (2005).CrossRefGoogle Scholar
13. Liang, W., Tsen, K. T., Ferry, D. K., Lu, H., Schaff, W. J., Applied Physics Letters 84, 3849 (2004).CrossRefGoogle Scholar
14. Liang, W., Tsen, K. T., Ferry, D. K., Lu, H., Schaff, W. J., Applied Physics Letters 84, 3681 (2004).CrossRefGoogle Scholar
15. Tsen, K. T., Poweleit, C., Ferry, D. K., Lu, H., Schaff, W. J., Applied Physics Letters 86, 222103 (2005).CrossRefGoogle Scholar
16. Swartz, C. H., Tompkins, R. P., Giles, N. C., Myers, T. H., Lu, H., Schaff, W. J., Eastman, L. F., Journal of Crystal Growth 269, 29 (2004).CrossRefGoogle Scholar
17. Chen, F., Cartwright, A. N, Lu, Hai, and Schaff, W. J., Applied Physics Letters 87, 212104 (2005).CrossRefGoogle Scholar
18. Chen, F., Cartwright, A. N., Lu, H., Schaff, W. J., Applied Physics Letters 83, 4984 (2003).CrossRefGoogle Scholar
19. Chen, F., Cartwright, A. N., Lu, H., Schaff, W. J., Journal of Crystal Growth 269, 10 (2004).CrossRefGoogle Scholar
20. Chen, F., Cartwright, A. N., Lu, H., Schaff, W. J., Physica E-Low-Dimensional Systems & Nanostructures 20, 308 (2004).CrossRefGoogle Scholar
21. Chen, F., Cartwright, A. N., Lu, H., Schaff, W. J., Physica Status Solidi A-Applications and Materials Science 202, 768 (2005).CrossRefGoogle Scholar
22. Wintner, E., Journal of Applied Physics 57, 1533 (1985).CrossRefGoogle Scholar
23. Shah, J., Leheny, R. F., Lin, C., Solid State Communications 18, 1035 (1976).CrossRefGoogle Scholar
24. Mccallum, D. S., Cartwright, A. N., Huang, X. R., Boggess, T. F., Smirl, A. L., Hasenberg, T. C., Journal of Applied Physics 73, 3860 (1993).CrossRefGoogle Scholar
25. Huang, X. R., Mccallum, D. S., Dawson, M. D., Smirl, A. L., Boggess, T. F., Hasenberg, T. C., Tober, R. L., Journal of Applied Physics 74, 1868 (1993).CrossRefGoogle Scholar