Published online by Cambridge University Press: 15 February 2011
Because cells can recognize and attach to short synthetic peptides containing the tripeptide sequence, arg-gly-asp (RGD), we have designed peptides which will spontaneously bind and present an active RGD sequence on biomaterial surfaces. We have analyzed a number of synthetic peptides and fully characterized one which fulfills this functional criteria. This peptide has been named PepTite-2000™. When biomaterials are placed in aqueous buffers containing PepTite-2000, the peptide rapidly binds to the surface and provides a site for cell attachment. Cell attachment occurs to PepTite-2000 coated materials by an RGD dependent mechanism using the αvβ3 integrin. This coating protocol is widely applicable, and the peptide will coat and promote cell attachment to all the commonly used biomaterials we have tested including dacron, teflon, titanium and silicone. Analysis of the soft tissue response to dacron implants coated with PepTite-2000 demonstrates that the coating results in more rapid tissue ingrowth and less giant cell recruitment around the implanted materials. These data demonstrate that PepTite-2000 can be used to modify biomaterial surfaces and present a more “natural” site for cell interactions.