Published online by Cambridge University Press: 01 February 2011
Cellulose electro-active paper (EAPap) has attracted much attention as a new smart electronic material to be utilized as mechanical sensors, bio compatible applications and wireless communications. The thin EAPap film has many advantages such as lightweight, flexible, dryness, biodegradable, easy to chemically modify, cheap and abundance. Also EAPap film has a good reversibility for mechanical performance, such as bending movement, under electric field. The main actuation mechanism governed by piezoelectric property can be modulated by material direction and stretching ratio during process. In this paper we present the overview as well as fabrication process of cellulose EAPap as a novel smart material. Also we propose the method to enhance the piezoelectricity, its mechanical and electromechanical properties. In addition, the fabrication of high quality metal patterns with Schottky diode on the cellulose surface is an initiating stage for the integration of the EAPap actuator and electronic components. The integration of flexible actuator and electronic elements has huge potential application including flying magic carpets, microwave driven flying insets and micro-robots and smart wall papers.