Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-13T02:18:43.386Z Has data issue: false hasContentIssue false

Characteristics of Thin Layers of SiO2 Fabricated by Rapid Thermal Oxidation

Published online by Cambridge University Press:  28 February 2011

S. Prasad
Affiliation:
Institut für Halbleitertechnologie und Werkstoffe der Elektrotechnik,Appelstrasse 11A, D-3000 Hannover, West Germany
J. Haase
Affiliation:
Institut für Halbleitertechnologie und Werkstoffe der Elektrotechnik,Appelstrasse 11A, D-3000 Hannover, West Germany
R. Früchtnicht
Affiliation:
Institut für Halbleitertechnologie und Werkstoffe der Elektrotechnik,Appelstrasse 11A, D-3000 Hannover, West Germany
R. Ferretti
Affiliation:
Institut für Halbleitertechnologie und Werkstoffe der Elektrotechnik,Appelstrasse 11A, D-3000 Hannover, West Germany
D. Haack
Affiliation:
Robert-Bosch-Gmbh, Reutlingen, West Germany
Get access

Abstract

Thin layers of SiO2 (60-300 Å) were fabricated by rapid thermal oxidation (RTO). Growth rate on (100) and (111) Si was determined. Two different high-temperature anneal cycles were used to reduce the interface state density. Work function difference between metal and semiconductor depends upon technology and can be attributed to the changes in Si-SiO2 barrier height.

Type
Research Article
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ziegler, K., Klausmann, E. and Kar, S., Solid State Elec. 18, 189 (1975).Google Scholar
2. Nulman, J., Krusius, J. P. and Gat, A., IEEE EDL 5, 205 (1985).Google Scholar
3. Moslehi, M. M., Shastas, S. C. and Saraswat, K. C., Appl. Phys. Lett., 1353 (1985).Google Scholar
4. Tung, N. C. and Caratini, Y., Electron. Lett. 22, 694 (1986).Google Scholar
5. Sze, S. M., Physics of Semiconductor Devices, 2nd Edition (John Wiley and Sons, New York, 1981).Google Scholar
6. Hickmott, T. W., J. Appl. Phys. 51, 4269 (1980).Google Scholar
7. Haberle, K. and Froschle, E., J. Electrochem. Soc., 878 (1979).Google Scholar
8. Krautschneider, W. H., Laschinski, J., Seifert, W. and Wagemann, H. G., Solid State Elec. 29, 571 (1986).Google Scholar
9. Razouk, R. and Deal, B. E., J. Electrochem. Soc. 129, 806 (1982).Google Scholar
10. Deal, B. E., Snow, E. H. and Mead, C. A., J. Phys. Chem. Solids 27, 1873 (1966).Google Scholar
11. Hesto, P., in Instabilities in Silicon Devices, Eds. Barbottin, G. & Vapallie, A. (Elsevier Science Publications, Amsterdam, 1986). p. 263.Google Scholar
12. Ning, T. H., J. Appl. Phys. 49, 4077 (1978).Google Scholar