Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2025-01-05T23:17:23.039Z Has data issue: false hasContentIssue false

Characterization for Organic Solid Solution and Formation of Organic Electronics

Published online by Cambridge University Press:  01 February 2011

Yan Shao
Affiliation:
Department of Materials Science and Engineering, University of California, Los Angeles, CA 90095, USA
Yang Yang*
Affiliation:
Department of Materials Science and Engineering, University of California, Los Angeles, CA 90095, USA
*
*Author to whom correspondence should be addressed; e-mail: yangy@ucla.edu.
Get access

Abstract

Recent two decades have seen the rapid development of organic electronics and much attention has been paid to carrier transport behavior. However, other characteristics, such as material compatibility, may be overlooked. We propose a new doping method taking advantage of fused organic solid solution, which is prepared by high-pressure and high temperature processing. In this method, the stable material systems can be selected and high performance organic light-emitting diodes with different colors have been demonstrated.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Tang, C.W. and VanSlyke, S.A., Appl. Phys. Lett. 65, 3610 (1987).Google Scholar
2 Burroughes, J.H., Bradley, D.D.C., Brown, A.R., Marks, R.N., Mackay, K., Friend, R.H., Burns, P.L. and Holmes, A.B., Nature 347, 539 (1990).Google Scholar
3 Hung, L.S., Chen, C.H., Materials Science and Engineering R39, 143 (2002).Google Scholar
4 Bardsley, J. N., IEEE Journal of Selected Topics in Quantum Electronics 10, 3 (2004).Google Scholar
5 Fox, J.L., Chen, C.H., US Patent 4 736 032, 1988.Google Scholar
6 Brunner, K., Dijken, A., Börner, H., Bastiaansen, J., Kiggen, N., Langeveld, B., J. CHEM. SOC. 126, 6042 (2004).Google Scholar
7 Liao, L.S., Klubek, K.P., Tang, C.W., Appl. Phys. Lett. 84, 167 (2004).Google Scholar
8 Chwang, A.B., Kwong, R.C., and Brown, J.J., Appl. Phys. Lett. 80, 725 (2002).Google Scholar
9 Ma, D., Lee, C.S., Lee, S.T., and Hung, L.S., Appl. Phys. Lett. 80, 3641 (2002).Google Scholar
10 Hamada, Y., Kanno, H., Tsujioka, T., Takahashi, H., Usuki, T., Appl. Phys. Lett. 75, 1682 (1999).Google Scholar
11 Ali, T., Jones, G., and Howard, W., SID 04 Digest, 1012.Google Scholar
12 Tang, C.W., VanSlyke, S.A., Chen, CH., J. Appl. Phys. 65, 3610 (1989).Google Scholar
13 He, G., Schneider, O., Qin, D., Zhou, X., Pfeiffer, M., Leo, K., J. Appl. Phys. 95, 5773 (2004).Google Scholar
14 Bozano, L.D., Carter, K.R., Lee, V.Y., Miller, R.D., DiPietro, R., Scott, J.C., J. Appl. Phys. 94, 3061 (2003).Google Scholar
15 Vamvounis, G., Aziz, H., Hu, N., Popovic, Z. D., Synth. Met. 143, 69 (2004).Google Scholar
16 Popovic, Z.D., Aziz, H., IEEE Journal on Selected Topics in Quantum Electronics 8, 362 (2002).Google Scholar
17 Choong, V-E, Shi, S., Curless, J., Shieh, C-L, Lee, H.-C, So, F., Shen, J., Yang, J., Appl. Phys. Lett. 75, 172 (1999).Google Scholar
18 Qin, D.S., Yan, D.H., Wang, L.X., Appl. Phys. Lett. 77, 3113 (2000).Google Scholar
19 Shao, Y., Yang, Y., Appl. Phys. Lett. 83, 2453 (2003).Google Scholar
20 Elschner, A., Bruder, F., Heuer, H.-W., Jonas, F., Karbach, A., Kirchmeyer, S., Thurm, S., Wehrmann, R., Synth. Met. 111, 139 (2000).Google Scholar
21 Kido, J., Kimura, M., Nagai, K., Science 267, 1332 (1995).Google Scholar
22 D'Andrade, B.W., Thompson, M.E., Forrest, S.R., Adv. Mater. 14, 147 (2002).Google Scholar
23 Kawamura, Y., Yanagida, S., Forrest, S.R., J. Appl. Phys. 92, 87 (2002).Google Scholar
24 Jiang, X.Y., Zhang, Z.L., Zhang, B.X., Zhu, W.Q., and Xu, S.H., Synth. Met. 129, 9 (2002).Google Scholar