Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-15T01:01:34.688Z Has data issue: false hasContentIssue false

Charge transport enhancement via air-mediated self-organization in polymer semiconductors

Published online by Cambridge University Press:  21 March 2012

Takashi Kushida
Affiliation:
Integrative Technology Research Institute, Teijin Limited, Hino, Tokyo 191-8512, Japan
Takashi Nagase
Affiliation:
Department of Physics and Electronics, Osaka Prefecture University, Sakai 599-8531, Japan The Research Institute for Molecular Electronics Devices, Osaka Prefecture University, Sakai 599-8531, Japan
Hiroyoshi Naito
Affiliation:
Department of Physics and Electronics, Osaka Prefecture University, Sakai 599-8531, Japan The Research Institute for Molecular Electronics Devices, Osaka Prefecture University, Sakai 599-8531, Japan
Get access

Abstract

Air-mediated molecular ordering in self-organized polymer semiconductors of regioregular poly(3-hexylthiophene) (P3HT) and poly[(9,9′-dioctylfluorenyl-2,7-diyl)-(2,2′-bithiophene-5,5′-diyl)] (F8T2) was investigated using organic field-effect transistors (OFETs) fabricated by transfer-printing using poly(dimethylsiloxane) stamps with various surface energies. OFET measurements revealed that the charge transport in the polymer semiconductors via the air interface layer was better than that via the substrate interface layer. The results indicated that the formation of a highly ordered microstructure at the polymer/air interface through air-mediated self-organization occurs in many polymer semiconductors. This air-mediated self-organization was weaker than substrate-mediated self-organization, whose influence appeared in OFETs with thin semiconductor films.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Katz, H. and Bao, Z., J. Phys. Chem. B. 104, 671 (2000).Google Scholar
2. Rogers, J.A., Bao, Z., Baldwin, K., Dodabalapur, A., Crone, B., Raju, V.R., Kuck, V., Katz, H., Amundson, K., Ewing, J., Drzaic, P., PNAS. 98, 4835 (2001).Google Scholar
3. Dimitrakopoulos, C. and Malenfant, P., Adv. Mater. 14, 99 (2002).Google Scholar
4. Chabinyc, M.L. and Salleo, A., Chem. Mater. 16, 4509 (2004).Google Scholar
5. Subramanian, V., Fréchet, J.M. J., Chang, P.C., Huang, D.C., Lee, J.B., Molesa, S.E., Murphy, A.R., Redinger, D.R., Volkman, S.K., Proc. IEEE. 93, 1330 (2005).Google Scholar
6. Sirringhaus, H., Adv. Mater. 17, 2411 (2005).Google Scholar
7. Park, S.K., Kim, Y.H., Han, J.I., Moon, D.G., Kim, W.K., IEEE Trans. Elec. Dev. 49, 2008 (2002).Google Scholar
8. Kim, Y.H., Park, S.K., Han, J.I., Moon, D.G., Kim, W.K., Kwak, M.G., Proc. International Display Workshop, 255 (2002).Google Scholar
9. Chabinyc, M.L., Salleo, A., Wu, Y., Liu, P., Ong, B.S., Heeney, M., McCulloch, I., J. Am. Chem. Soc., 126, 13928 (2004).Google Scholar
10. Takakuwa, A. and Azumi, R., Jpn. J. Appl. Phys. 47, 1115 (2008).Google Scholar
11. Kushida, T., Nagase, T., Naito, H., Org. Electron., 11, 1323 (2010).Google Scholar
12. McCulloch, I., Heeney, M., Bailey, C., Genevicius, K., MacDonald, I., Shkunov, M., Sparrowe, D., Tierney, S., Wagner, R., Zhang, W., Chabinyc, M. L., Kline, R.J., McGehee, M.D., Toney, M.F., Nature Mater. 5, 328 (2006).Google Scholar
13. Hamadani, B.H., Gundlach, D.J., McCulloch, I., Heeney, M., Appl. Phys. Lett. 91, 243512 (2007).Google Scholar
14. Payne, M.M., Parkin, S.R., Anthony, J.E., Kuo, C.-C., Jackson, T.N., J. Am. Chem. Soc. 127, 4986 (2005).Google Scholar
15. Ebata, H., Izawa, T., Miyazaki, E., Takimiya, K., Ikeda, M., Kuwabara, H., Yui, T., J. Am. Chem. Soc., 129, 15732 (2007).10.1021/ja074841iGoogle Scholar
16. Kushida, T., Nagase, T., Naito, H., Appl. Phys. Lett. 98, 063304 (2011).Google Scholar
17. Kindera, L., Kanickia, J., Petroffa, P., Synth. Metals. 146, 181 (2004).Google Scholar