Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-15T06:55:50.858Z Has data issue: false hasContentIssue false

Chemical delithiation, thermal transformations and electrochemical behaviour of iron- substituted lithium nickelate.

Published online by Cambridge University Press:  18 March 2011

Pedro Lavela
Affiliation:
Laboratorio de Química Inorgánica, Universidad de Córdoba, Campus de Rabanales. Edificio C3, Planta 1. 14071 Cordoba, Spain
Carlos Pérez-Vicente
Affiliation:
Laboratorio de Química Inorgánica, Universidad de Córdoba, Campus de Rabanales. Edificio C3, Planta 1. 14071 Cordoba, Spain
José L. Tirado
Affiliation:
Laboratorio de Química Inorgánica, Universidad de Córdoba, Campus de Rabanales. Edificio C3, Planta 1. 14071 Cordoba, Spain
Get access

Abstract

Chemical deintercalation in Fe-substituted lithium nickelate and its effects on the thermal stability and electrochemical behaviour are studied. A sample with Fe:Ni ratio of 1:9 was used as the starting material. Chemical deintercalation of the ceramic product was achieved by acid treatment with 0.6 M aqueous hydrochloric acid solutions at room temperature. The atomic Fe:Ni ratio remained unaffected while the Li:(Fe+Ni) ratio decreased significantly down to ca. 0.5 after acid treatment. Infrared spectroscopy was used to discard a proton exchange side reaction. The initial open circuit voltage (OCV) of non-aqueous electrolyte lithium cells using the chemically deintercalated solids was ca. 3.7 V, while 3.0 V were obtained with the pristine oxide. Heat treating the deintercalated solids lead to oxygen evolution at 230°C with the formation of spinel rock-salt structure solids at 600°C. The improved thermal stability as compared with iron-free lithium nickelate is an interesting factor for battery safety.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Dyer, L.D., Borie, B.S., and Smith, G.P., J. Am. Chem. Soc., 76, 1499 (1954).Google Scholar
2. Goodenough, J.B., Wickham, D.G., and Croft, W.J., J. Phys. Chem. Solids, 5, 107 (1958).Google Scholar
3. Maruta, J., Yasuda, H., and Yamachi, M., J. Power Sources, 90, 89 (2000).Google Scholar
4. Alcantara, R., Lavela, P., Tirado, J.L. Stoyanova, R., Kuzmanova, E., and Zhecheva, E., Chem. Mater., 9, 2145 (1997).Google Scholar
5. Monge, M.A., Puebla, E. Gutiérrez, Martínez, J.L., Rasines, I., and Campa, J.A., Chem. Mater., 12, 2001 (2000).Google Scholar
6. Seguin, L., Amatucci, G., Anne, M., Chabre, Y., Strobel, P., Tarascon, J.M., and Vaugham, G., J. Power. Sources, 81–82, 604 (1999).Google Scholar
7. Croguennec, L., Pouillerie, C., and Delmas, C., J. Electrochem. Soc., 147, 1314 (2000).Google Scholar
8. Rossen, E., Jones, C.W.D., and Dahn, J.R., Solid State Ionics, 57, 311 (1992).Google Scholar
9. Prado, G., Rougier, A., Fournes, L., and Delmas, C., J. Electrochem. Soc. 147, 2880 (2000).Google Scholar
10. Cho, J., Chem Mater. 12, 3089 (2000).Google Scholar
11. Chang, C.C., Kim, J.Y., and Kumta, P.N., J. Electrochem. Soc., 147, 1722 (2000).Google Scholar
12. Ohzuku, T., Ueda, A., and Kouguchi, M., J. Electrochem. Soc. 142, 4033, (1995).Google Scholar
13. Pouillerie, C., Croguennec, L., and Delmas, C., Solid State Ionics 132, 15 (2000).Google Scholar
14. Morales, J., Pérez-Vicente, C., and Tirado, J. L., Mater. Res. Bull. 25, 623 (1990).Google Scholar
15. Morales, J., Pérez-Vicente, C., and Tirado, J. L., J. Thermal. Anal., 38, 295 (1992).Google Scholar
16. Young, R.A., Sakthivel, A., Moss, T.S., and Paiva-Santos, C.O., J. Appl. Crystallogr., 75, 336 (1995).Google Scholar
17. Feng, Q., Miyai, Y., Kanoh, H., and Ooi, K., Chem. Mater., 5, 311 (1993).Google Scholar
18. Feng, Q., Kanoh, H., Miyai, Y., and Ooi, K., Chem. Mater., 7, 379 (1995).Google Scholar
19. Lavela, P., Sánchez, L., Tirado, J.L., Bach, S., and Pereira-Ramos, J.P., J. Solid State Chem., 150, 196 (2000).Google Scholar