Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-15T07:14:11.822Z Has data issue: false hasContentIssue false

Chemical Reaction at the Ni/Inp (110) and Ni/GaAs (110) Interfaces*

Published online by Cambridge University Press:  22 February 2011

T. Kendelewicz
Affiliation:
Stanford Electronics Laboratories, Stanford University, Stanford, California 94305
W. G. Petro
Affiliation:
Stanford Electronics Laboratories, Stanford University, Stanford, California 94305
M. D. Williams
Affiliation:
Stanford Electronics Laboratories, Stanford University, Stanford, California 94305
S. H. Pan
Affiliation:
Stanford Electronics Laboratories, Stanford University, Stanford, California 94305
I. Lindau
Affiliation:
Stanford Electronics Laboratories, Stanford University, Stanford, California 94305
W. E. Spicer
Affiliation:
Stanford Electronics Laboratories, Stanford University, Stanford, California 94305
Get access

Abstract

The chemical reaction at the Ni/InP (110) and Ni/GaAs (110) interfaces produced by sequential deposition of thin Ni overlayers onto cleaved semiconductor surfaces has been investigated with valence band (VB) and core level photoemission and Auger spectroscopies using synchrotron radiation as the excitation source. By monitoring changes in the VB, P 2p, In 4d, Ga 3d, As 3d, and Ni 3p photoemission spectra and the lineshape of the P LVV Auger transition during the initial stage of Schottky barrier formation, we found that for both interfaces the first few Å of Ni react strongly with the surface resulting in the formation of a nickel phosphide or nickel arsenide. At the same time, segregation of metallic In or Ga is observed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Supported by DARPA and ONR.

References

REFERENCES

1. Poate, J. M., Tu, K. N., and Mayer, J. W., eds., Thin Films - Interdiffusion and Reactions (Wiley, New York 1978).Google Scholar
2. Spicer, W. E., Lindau, I., Skeath, P., and Su, C. Y., J. Vac. Sci. Technol. 17, 1019 (1980).CrossRefGoogle Scholar
3. Waldrop, J. R. and Grant, R. W., Appl. Phys. Lett. 34, 630 (1979).Google Scholar
4. Williams, R. H., McKinley, A., Hughes, G. J., Montgomery, V., and McGovern, I. T., J. Vac. Sci. Technol. 21, 594 (1982).Google Scholar
5. Brillson, L. J., Brucker, C. F., Katnani, A. D., Stoffel, N. G., and Margaritondo, G., J. Vac. Sci. Technol. 19, 661 (1981).CrossRefGoogle Scholar
6. Petro, W. G., Babalola, I. A., Kendelewicz, T., Lindau, I., and Spicer, W. E., unpublished.Google Scholar
7. Williams, R. H., Montgomery, V., and Varma, R., J. Phys. C11, L735 (1978).Google Scholar
8. Rubloff, G. W., Ho, P. S., Freeouf, J. L., and Lewis, J. E., Phys. Rev. B23, 4183 (1981)CrossRefGoogle Scholar
9. Kendelewicz, T., Petro, W. G., Lindau, I., and Spicer, W. E., Phys. Rev. B28, 3618 (1983).CrossRefGoogle Scholar
10. Roth, J. A. and Crowell, C. R., J. Vac. Sci. Technol. l5, 1317 (1978).CrossRefGoogle Scholar
11. Egelhoff, W. F. Jr. and Tibbetts, G. G., Phys. Rev. 19, 5028 (1979).CrossRefGoogle Scholar
12. Franciosi, A., Weaver, J. H., and Schmidt, F., Phys. Rev. B26, 546 (1982).CrossRefGoogle Scholar
13. Rossi, G., Nogami, J., Yeh, J. J., and Lindau, I., J. Vac. Sci. Technol. B1, 530 (1983)Google Scholar
14. Hansen, M., Constitution of Binary Alloys, (McGraw-Hill, New York 1958) p. 1027.Google Scholar
15. Ogawa, M., Thin Solid Films 70, 181 (1980).Google Scholar
16. Oelhafen, P., Freeouf, J. L., Kuan, T. S., Jackson, T. N., and Batson, P. E., J. Vac. Sci. Technol. B1, 588 (1983).Google Scholar
17. Stohr, J. and Jaeger, R., J. Vac. Sci. Technol. 21, 619 (1982).Google Scholar
18. Grunthaner, P. J., Grunthaner, F. J., and Mayer, J. W., J. Vac. Sci. Technol. 17, 924 (1980).Google Scholar