Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-15T06:36:31.631Z Has data issue: false hasContentIssue false

Chemical Vapor Deposition of Ruthenium and Osmium Films from Mono- and bis-(Cyclopentadienyl) Complexes as Precursors

Published online by Cambridge University Press:  15 February 2011

Christopher J. Smart
Affiliation:
Vassar College, Poughkeepsie, NY
Akshaya Gulhati
Affiliation:
Vassar College, Poughkeepsie, NY
Scott K. Reynolds
Affiliation:
IBM-TJ Watson Research Center, Yorktown Heights, NY.
Get access

Abstract

We have investigated cyclopentadienyl (Cp) complexes of Ru and Os as precursors for low temperature CVD of pure ruthenium and osmium films. Films were grown on a variety of substrates in a warm-walled CVD reactor, equipped with a resistively heated wafer chuck, massflow controllers for carrier gas regulation, and a mechanically-backed oil-vapor diffusion pump. Typical depositions were done under ca. 1 Torr total pressure. Use of air or oxygen as a carrier gas and Cp2M (M = Ru or Os) as precursors gave high purity, conformal films of ruthenium and osmium at temperatures as low as 275°C and 350°C, respectively. Under these conditions, the only observable by-products were CO2 and H2O, indicating that surface-catalyzed, complete oxidation of the ligands was involved in the decomposition process. Growth rates, film purities, resistivities and conformality were measured.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Green, M. L. and Levy, R. A., J. Metals, 37(6), 63 (1985).Google Scholar
[2] Charai, A., Hornstrom, S. E., Thomas, O., Harper, J. M. E., J. Vac. Sci. Technol. A, 7, 784 (1989).Google Scholar
[3] Krusin-Elbaum, L., Wittmer, M., Lee, D. S., Appl. Phys. Lett., 50(26), 1879 (1987).10.1063/1.97673Google Scholar
[4] Kolowa, E., So, F. C. T., Pan, E. T-S., Nicolet, M-A., Appl. Phys. Lett., 50(3), 854 (1987).Google Scholar
[5] Si, J. and Desu, S. B., J. Mater. Res., 8, 2644 (1993).10.1557/JMR.1993.2644Google Scholar
[6] Green, M. L., Gross, M. E., Papa, L. E., Schnoes, K. J., Brasen, D., J. Electrochem. Soc, 132, 2677 (1985).10.1149/1.2113647Google Scholar
[7] Grill, A., Kane, W., Viggiano, J., Brady, M, Laibowitz, R., J. Mater. Res., 7, 3260 (1992).10.1557/JMR.1992.3260Google Scholar
[8] Lehwald, S., Wagner, H., Thin Sol. Films, 21, S23 (1974).Google Scholar
[9] Shih, A., Berry, A., Marrian, C. R. K., Haas, G. A., IEEE Trans. Electron. Dev., 34, 1193 (1987).10.1109/T-ED.1987.23066Google Scholar
[10] Mogi, K., Tsurumi, S., Noda, Y., Japanese Patent, No. 63101740 (6 May 1988).Google Scholar
[11] Trent, D. E., Paris, B., Krause, H. H., Inorg. Chem., 3, 1057 (1964).10.1021/ic50017a041Google Scholar
[12] Viguié, J. C., Spitz, J., J. Electrochem. Soc, 122, 585 (1975).Google Scholar
[13] Senzaki, Y., McCormick, F. B., Gladfelter, W. L., Chem. Mater., 4, 747 (1992).Google Scholar
[14] Kirss, R. U., Organometallics, 11, 497 (1992).10.1021/om00038a001Google Scholar
[15] Berry, A. D., Brown, D. J., Kaplan, R., Cucauskas, E. J., J. Vac. Sci. Technol. A, 4, 215 (1986).Google Scholar
[16] Senzaki, Y., Gladfelter, W. L., McCormick, F. B., Chem. Mater., 5, 1715 (1993).Google Scholar
[17] Pertici, P., Vitulli, G., Paci, M., Porri, L., J. Chem. Soc. Dalton Trans., 1964 (1980).Google Scholar
[18] Humphries, A. P. and Knox, S. A. R., J. Chem. Soc. Dalton Trans., 1710 (1975).Google Scholar
[19] Yagi, Jun, Japanese patent, No. 78 63,294 (6 June 1978).Google Scholar
[20] Kobylinski, Thaddeus P., Taylor, Brian, Vogel, Roger F., U.S. patent, No. 4,122,039 (24 October 1978).Google Scholar