Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-15T07:04:57.079Z Has data issue: false hasContentIssue false

Clustering Kinetics of Arsenic and Phosphorus in Laser Annealed Silicon

Published online by Cambridge University Press:  25 February 2011

Josef Goetzlich*
Affiliation:
Fraunhofer-Institut für Festkörpertechnologie, Paul-Gerhardt-Allee 42, 8000 München 60, FRG
Get access

Abstract

High-dose arsenic and phosphorus ion implanted silicon was annealed either by a CW CO2 or a pulsed Nd:YAG laser creating supersaturated dopant concentrations up to 3·1021 cm−3. The relaxation of these metastable electrically active atoms was investigated during thermal post-annealing at temperatures between 600 and 1000°C for times between 3 and 106 s. In heavily doped samples which contain residual damage after laser annealing, a very fast first relaxation phase is observed followed by a much slower second phase. In samples without residual damage only this second slower phase is seen. Carrier concentration profile measurements show that the saturation concentration after the relaxation depends only on temperature and corresponds to the concentration in thermal equilibrium. Using reaction kinetics a cluster model is proposed which demonstrates that in As doped layers the most probable number of As atoms in one cluster depends on temperature (4 As atoms at 700°C, 3 As atoms at 800 - 1000°C). In P doped layers the most probable clusters contain 3 P atoms at temperatures between 700 and 900°C.

Type
Research Article
Copyright
Copyright © Materials Research Society 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1] White, C. W., Appleton, B. R. and Wilson, S. R., in “Laser Annealing of Semiconductors” (Poate, J. M. and Mayer, J. W., eds.) p. 111, Acad. Press, New York (1982)Google Scholar
2] Wilson, S. R., Paulson, W. M., Gregory, R. B., Tam, G., White, C. W., Appleton, B. R., Rai, A. K. and Pronko, P. P., J. Appl. Phys. 54, 5004 (1983)Google Scholar
3] Lietoila, A., Gibbons, J. F., and Sigmon, T. W., Appl. Phys. Lett. 36, 765 (1980)Google Scholar
4] Gotzlich, J., Tsien, P. H., Henghuber, G., and Ryssel, H. in “Ion Implantation: Equipment and Techniques”, (Ryssel, H. and Glawischnig, H., edits.), Springer-Verlag, Berlin (1983)Google Scholar
5] White, C. W., Appleton, B. R., Stritzker, B., Zehner, D. M. and Wilson, S. R., in “Laser and Electron-Beam Solid Interactions and Materials Processing” (Gibbons, J. F., Hess, L.D., and Sigmon, T. W., eds.) p. 109, North-Holland, New York (1984)Google Scholar
[6] Baeri, R., Foti, G., Poate, J. M., Campisano, S. U., and Cullis, A. G., Appl. Phys. Lett. 38, 800 (1981)Google Scholar
[7] White, C. W., J. de Phys. 44, Col. C5, suppl. 10, 145 (1983)Google Scholar
8] Olson, G. L., Roth, J. A., Hess, L. D. and Narayan, J., in “Energy Beam-Solid Interactions and Transient Thermal Processing” (Fan, J. C. C. and Johnson, N. M., eds.), p. 375, North-Holland, New York (1984)Google Scholar
9] Gotzlich, J., Tsien, P. H., and Ryssel, H., in the same literature as L8, p. 235 (1984)Google Scholar
[10] Gbtzlich, J., to be publishedGoogle Scholar
[11] Guerrero, E., Pbtzl, H., Tielert, R., Grassenbauer, M., and Stingeder, G., Journ. Electrochem. Soc. 129, 1826 (1982)Google Scholar
[12] Fair, R. B. and Weber, G. R., J. Appl. Phys. 44, 273 (1973)Google Scholar
[13] Tsai, M. Y., Morehead, F. F., Baglin, J. E. E., and Michel, A. E., J. Appl. Phys. 51, 3230 (1980)Google Scholar
[14] Hu, S. M. in “Atomic Diffusion in Semiconductors” (Shaw, D., ed.) p. 306, Plenum Press, London (1973)Google Scholar
[15] Chu, W.-K., Appl. Phys. Lett. 36, 273 (1980)Google Scholar
[16] Fair, R. B., and Tsai, J. C. C., Journ. Electrochem. Soc. 124, (1977)Google Scholar
[17] Nobili, D., Armigliato, A., Finetti, M., and Solmi, S., J. Appl. Phys. 53, 1484 (1982)CrossRefGoogle Scholar
[18] Servidori, M., Monte, C. Dal, and Zini, Q., phys. stat. sol. (a) 80, 277 (1983)Google Scholar