Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2025-01-01T02:30:12.124Z Has data issue: false hasContentIssue false

Comparative Study of HgI2, PbI2 and TlBr Films Aimed for Ionizing Radiation Detection in Medical Imaging

Published online by Cambridge University Press:  12 July 2011

Marcelo Mulato
Affiliation:
Department of Physics, University of São Paulo, Ribeirão Preto-SP Brazil
José F. Condeles
Affiliation:
Department of Physics, Universidade Federal do Triângulo Mineiro, Uberaba-MG, Brazil
Julio C. Ugucioni
Affiliation:
Department of Physics, University of São Paulo, Ribeirão Preto-SP Brazil
Ademar M. Caldeira-Filho
Affiliation:
Department of Physics, University of São Paulo, Ribeirão Preto-SP Brazil
Natalia Destefano
Affiliation:
Department of Physics, University of São Paulo, Ribeirão Preto-SP Brazil
Get access

Abstract

Wide bandgap semiconductor films were obtained by spray pyrolysis, thermal evaporation and casting. These films were characterized under similar conditions in order to compare their structures, surface morphology and photocurrent properties. All films show either a crystalline or a polycrystalline structure. SEM pictures of sprayed films present holes and fissures and non-total covering of the substrate. The photoresponse was obtained for evaporated TlBr films, HgI2 casted with polystyrene (PS) scaffold, sprayed and evaporated PbI2 films. The photo to dark current ratio is discussed as well as the difference of photo to dark current at an electric field of 100 V/cm. The discussion also focuses on a future optimized material.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Destefano, N., Mulato, M.. Symp Nucl. Rad. Detec. Mat. 1164, 2009 MRS Spring Meeting, 129 (2010).Google Scholar
2. Destefano, N., Mulato, M.. Nucl. Inst. Meth. Phys. Res. A 624(1), 114 (2010).Google Scholar
3. Destefano, N., Mulato, M.. J.Mater Sci. 46(7), 2229 (2011).Google Scholar
4. Condeles, J.F., Ugucioni, J.C., Mulato, M.. Symp Amorph. Nanocryst. Si Sci. Tech. 808, 2004 MRS Spring Meeting, 489 (2004).Google Scholar
5. Ugucioni, J.C., Mulato, M.. J.Appl. Phys. 100(4), 043506 (2006).Google Scholar
6. Ugucioni, J.C., Ghilardi Netto, T., Mulato, M.. Nucl. Inst.Meth. Phys. Res. A 622(1), 157 (2010).Google Scholar
7. Condeles, J.F., Martins, T.M., dos Santos, T.C., Brunello, C.A., Mulato, M., Rosolen, J.M.. J. Non-Cryst. Sol. 338340, 81 (2004).Google Scholar
8. Condeles, J.F., Ghilardi Netto, T., Mulato, M.. Nucl. Inst.Meth. Phys. Res. A 577(1), 724 (2007).Google Scholar
9. Condeles, J. F., Ando, R. A., Mulato, M.. J. Mater. Sci. 43, 525 (2008).Google Scholar
10. Condeles, J. F., Mulato, M.. J. Mater. Sci. 46, 1462 (2011).Google Scholar
11. Caldeira Filho, A.M., Mulato, M.. Nucl. Inst.Meth. Phys. Res. A 636(1), 82 (2011).Google Scholar
12. Onodera, T., Hitomi, K., Shoji, T., Nuclear Instruments and Methods in Physics Research A 568, 433(2006).Google Scholar
13. Sellin, P.J., Nuclear Instruments and Methods in Physics Research A 563, 1 (2006).Google Scholar
14. Ponpon, J. P., Nucl. Instr. and Meth. A 551, 15 (2005).Google Scholar
15. Hartsough, N. E., Iwanczyk, S., Patt, B. E., and Skinner, E. L., IEEE Trans. Nucl. Sci. 51, 1812 (2004).Google Scholar
16. Baciak, J. E. and He, Z., IEEE Trans. Nucl. Sci. 51, 1886 (2004).Google Scholar
17. Kasap, S.O., Kabir, M.Z., Rowlands, J.A., Curr. Appl. Phys. 6, 288 (2006).Google Scholar
18. Street, R.A, Ready, S.E., Schuylenbergh, K.V.,Ho, J., Boyce, J.B., Nylen, P., Shah, K., Melekhov, L,Hermon, H.. J Appl Phys 91, 3345 (2002).Google Scholar