Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-30T20:03:08.708Z Has data issue: false hasContentIssue false

Comparing the DBT Conversion by Using Crystalline WS2 and WS2 Electron Irradiated Catalyst

Published online by Cambridge University Press:  15 February 2011

R. Rangel
Affiliation:
Programa de Posgrado en Fisica de Materiales, CICESE, Apartado Postal 2681, C. P. 2280, Ensenada, B. C., México
G. Alonso
Affiliation:
CIMAV, Depto. de Catdlisis, Chihuahua, Chih., México
E. Adem
Affiliation:
Instituto de Fisica-UNAM, Apdo. Postal 20-364, 01000 México, D. F., México
S. Fuentes
Affiliation:
Centro de Ciencias de ia Materia Condensada-UNAM, Apdo. Postal 268 1, C. P. 22800, Ensenada, B. C., México
D. H. Galvan
Affiliation:
Centro de Ciencias de ia Materia Condensada-UNAM, Apdo. Postal 268 1, C. P. 22800, Ensenada, B. C., México
Get access

Abstract

A catalytic study has been performed in WS2 irradiated with electrons at 1000 kGy. The purpose is to compare irradiated WS2 with WS2 crystalline in terms of DBT conversion, selectivity and surface area analysis. Also, Scanning Electron Microscope (SEM), X-raydiffraction were performed to show microstructural changes induced by irradiation. We found that DBT conversion increased by 55 % if compared with WS2 crystalline. The surface area decreased and the initial rate constants increased by a factor of four times. The selectivity for DCH after irradiation has decreased, while the selectivity for DIF and PCH has increased substantially. The DYH/DHS ratio has decreased in 42 %. The SEM micrographs showed that irradiation, at this level, produced certain damage in the crystallinity. The X-ray analysis showed different distribution in the intensity of the principal peaks after irradiation was achieved. This behavior could be correlated to the surface area decrement and the enhancing of the catalytic activity in WS2.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Weisser, O. and Landa, S. in Sulfide Catalysts: Thin Properties and Applications, Pergamon Press, Oxford, 1973, p. 4701.Google Scholar
2. Candia, R., Clausen, B. J., and Tapsoe, H., Influence of Preparation Methods': Bull. Soc., Chim. Beig., 90, 1225 (1981).Google Scholar
3. Fuentes, S., Diaz, G., Pedraza, F., Rojas, H., and Rosas, N., J. Catal., 113, 535(1988).Google Scholar
4. Boldyrev, V. V., Solid State Ionics, 63, 537(1995).Google Scholar
5. Galvhn, D. H., Rangel, R., Alonso, G., Fullerene Sci. and Technol., 6, 1025(1998).Google Scholar
6. El-Shobaky, G. A., Ghozza, A. M., Mohamed, G. M., Adsorpt. Sci, Technol., 15, 465(1997).Google Scholar
7. Solovetskii, Y., Panteleev, D., Lunin, V., Radiat. Phys. Chem., 52, 659 (1998).Google Scholar
8. Tenne, R., Margulais, L., Genut, M., and Hodes, G., Nature, 360, 444(1992),Google Scholar
9. Margulais, L., Salitra, G., Talanker, M., and Tenne, R., Nature,365, 113(1993).Google Scholar
10. Gates, B. C., Katzer, J. R., and Schuit, G. C. A., Chenmistry ofCatalytic Processes, McGraw Hill, New York, 1974, pp. 390426.Google Scholar
11. Chianelli, R. R., Catalysis Rev. Sci, Eng., 26, 321(1984).Google Scholar
12. Tauser, S. J., Pecoraro, T. A., and Chianelli, R. R., Catalysis, 63, 515(1980).Google Scholar
13. Harris, S., and Chianelli, R. R., J. Catalysis, 86, 400(1984).Google Scholar
14. Massoth, F., Adv. Catalysis, 27, 265(1978).Google Scholar
15. Pecoraro, T. A., and Chianelli, R. R., J. Catalysis, 67, 430(1991).Google Scholar
16. Daage, M., Chianelli, R. R., and Rupert, F., Structur-Functions Relationis in Layered Transition Metals Sulfides, Proceedings of the 10th Int. Congress on Catalysis, Ed. Guczi, et al. (Proceedings of the 10th Int. Congress on Catalysis, Budapest, Hungary, 19-24 July 1992), pp. 571580.Google Scholar