Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-15T06:57:56.713Z Has data issue: false hasContentIssue false

Comparison of (L)M(thd)2 (M = Mg, Ca, Sr, Ba; L = Tetraglyme, Pmdeta) Precursors for High K Dielectric Mocvd

Published online by Cambridge University Press:  10 February 2011

G. Bhandari
Affiliation:
Advanced Technology Materials, Inc.7 Commerce Drive, Danbury, CT 06810.
T. E. Glassman
Affiliation:
Advanced Technology Materials, Inc.7 Commerce Drive, Danbury, CT 06810.
D. B. Studebaker
Affiliation:
Advanced Technology Materials, Inc.7 Commerce Drive, Danbury, CT 06810.
G. Stauf
Affiliation:
Advanced Technology Materials, Inc.7 Commerce Drive, Danbury, CT 06810.
T. H. Baum
Affiliation:
Advanced Technology Materials, Inc.7 Commerce Drive, Danbury, CT 06810.
Get access

Abstract

High-purity alkaline earth ß-diketonate compounds such as [M(thd)2]x (M = Mg, Ca, Sr, Ba) have been utilized for liquid delivery MOCVD.[1] The “parent” compounds are oligomeric species with bridging ß-diketonate ligands and display both limited volatility and thermal instability. To enhance the precursor transport and film growth rates, Lewis base ligands are used to produce mononuclear precursors.[2] Lewis base coordinated metal (ß-diketonates) also exhibit increased solubilities in organic solvents. In this study, two classes of Group II ß-diketonates were compared; thermal stability and transport were evaluated by simultaneous thermal analyses, using both thermogravimetric (TGA) and differential scanning calorimetry (DSC). Liquid delivery and vaporization were evaluated in an “experimental” liquid delivery system and preliminary film growth, including electrical film properties were measured. The identity of the Lewis base and Group II precursor molecular structure as relates to liquid delivery vaporization and CVD film growth of BaxSr1–xTiO3 are described.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Van Buskirk, P. C., Bilodeau, S. M., Roeder, J. F. and Kirlin, P., Japan. J. Appl. Phys., 35, 2525 (1996). P. C. Van Buskirk, J. F. Roeder and S. M. Bilodeau, Integ. Ferroelec, 10, 9 (1995).Google Scholar
2 Gardiner, R., Brown, D. W., Kirlin, P. S., and Rheingold, A. L., Chem. Mater., 3, 1053 (1991). E. W. Berg, N. M. Herrera, Anal. Chim. Acta, 60, 117 (1972). G. Malandrino, D. S. Richeson, T. J. Marks, D. C. DeGroot, J. L. Shindler and C. R. Kannewurf, Appl. Phys. Lett, 66, 444 (1989). T. Nakamura, H. Abe, T. Kanamori and S. Shibata, Japan. J. Appl. Phys., 27, L1265 (1988).Google Scholar
3 Kotecki, D. E., Semiconductor International, 12, 109 (1996).Google Scholar
4 Bilodeau, S. M., Roeder, J., Van Buskirk, P. and Kirlin, P., Proc. CVD Tech. Interlevel Dielectrics andIntercon. Symp., Semicon West (1995). C. S. Hwang, S. O. Park, H. -J. Cho, C. S. Kang, H. -K. Kang, S. I. Lee and M. Y. Lee, Appl. Phys. Lett., 67, 2819 (1995). T. Kuroiwa, Y. Tsunemine, T. Horikawa, T. Makita, J. Tanimura, N. Mikami, and K. Sato, Japan. J. Appl. Phys., 33, 5187 (1995). T. Kawahara, M. Yamamuka, A. Yuuuki and K. Ohno, Japan. J. Appl. Phys., 34, 5077 (1995).Google Scholar
5 Yamamoto, A. and Kambara, S., J. Amer. Chem. Soc, 79, 4344 (1957). D. M. Puri, K. C. Pnade and R. C. Mehrotra, J. Less Common Metals, 4, 393 (1962). T. E. Glassman, D. Gordon and T. H. Baum, unpublished results, 1994.Google Scholar
6 Gardiner, R. A., Gordon, D. C., Stauf, G. T., Vaartstra, B. A., Ostrander, R. L. and Rhiengold, A. L., Chem. Mater., 6, 1967 (1993).Google Scholar