Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-15T07:12:44.738Z Has data issue: false hasContentIssue false

Complementary Hfet Technology for Low-Power Mixed-Mode Applications

Published online by Cambridge University Press:  10 February 2011

A. G. Baca
Affiliation:
Sandia National Laboratories, P. O. Box 5800, Albuquerque, NM 87185–0603
M. E. Sherwin
Affiliation:
Microwave Signal, Inc., 22300 COMSAT Drive, Clarksburg, MD 20871
J. C. Zolper
Affiliation:
Sandia National Laboratories, P. O. Box 5800, Albuquerque, NM 87185–0603
D. F. Dubbert
Affiliation:
Sandia National Laboratories, P. O. Box 5800, Albuquerque, NM 87185–0603
V. M. Hietala
Affiliation:
Sandia National Laboratories, P. O. Box 5800, Albuquerque, NM 87185–0603
R. J. Shul
Affiliation:
Sandia National Laboratories, P. O. Box 5800, Albuquerque, NM 87185–0603
L. R. Sloan
Affiliation:
Sandia National Laboratories, P. O. Box 5800, Albuquerque, NM 87185–0603
M. J. Hafich
Affiliation:
Sandia National Laboratories, P. O. Box 5800, Albuquerque, NM 87185–0603
Get access

Abstract

Development of a complementary heterostructure field effect transistor (CHFET) technology for low-power, mixed-mode digital-microwave applications is presented. An earlier digital CHFET technology with independently optimizable transistors which operated with 319 ps loaded gate delays at 8.9 fJ is reviewed. Then work demonstrating the applicability of the digital nJFET device as a low-power microwave transistor in a hybrid microwave amplifier without any modification to the digital process is presented. A narrow band amplifier with a 0.7 × 100 μm nJFET as the active element was designed, constructed, and tested. At 1 mW operating power, the amplifier showed 9.7 dB of gain at 2.15 GHz and a minimum noise figure of 2.5 dB. In addition, next generation CHFET transistors with sub 0.5 μm gate lengths were developed. Cutoff frequencies, ft of 49 GHz and 11.5 GHz were achieved for n- and p-channel FETs with 0.3 and 0.4 μm gates, respectively. These FETs will enable both digital and microwave circuits with enhanced performance.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Grider, D. E., Ruden, P. P., Nohava, J. C., Mactaggart, I. R., Stronczer, J. J., and Tran, R. H., “0.7 Micron Gate Length Complementary AI0. 75Ga0.2 5As/GaAs HIGFET Technology for High Speed/Low Power Digital Circuits,” IEDM Technical Digest, pp. 331334, 1992.Google Scholar
[2] Abrokwah, J. K., Huang, J. H., Ooms, W., Shurboff, C., Hallmark, J. A., Lucero, R., Gilbert, J., Bernhardt, B., and Hansell, G., “A Manufacturable Complementary GaAs Process,” IEEE GaAs IC Symposium Technical Digest, pp. 127130, 1993.Google Scholar
[3] Kiehl, R. A., Yates, J., Palmateer, L. F., Wright, S. L., Frank, D. J., Jackson, T. N., Degelormo, J. F., and Fleischman, A. J., “High-Speed, Low-Voltage, Complementary Heterostructure FET Circuit Technology,” IEEE GaAs IC Symposium Technical Digest, pp. 101104, 1991.Google Scholar
[4] Matsumoto, K., Ogura, M., Wada, T., Yao, T., Hayashi, Y., Hashizume, N., Kato, M., Fukuhara, N., Hirashima, H., and Miyashita, T., “Complementary GaAs SIS FET Inverter Using Selective Crystal Regrowth Technique,” IEEE Electron Device Letters, vol.7, pp. 182184, 1986.Google Scholar
[5] Mizutani, T., Fujita, S., and Yanagawa, F., “Complementary Circuit with AIGaAs/GaAs Heterostructure MISFETs Employing High-Mobility Two-Dimensional Electron and Hole Gases,” Electronics Letters, vol. 21, pp. 11161117, 1985.Google Scholar
[6] Zuleeg, R., Notthoff, J. K., and Troeger, G. L., “Double-Implanted GaAs Complementary JFETs,” IEEE Electron Device Letters, vol. 5, pp. 2123, 1984.Google Scholar
[7] Davari, B., Chang, W. H., Petrillo, K. E., Wong, C. Y., Moy, D., Taur, Y., Wordeman, M. R., Sun, J. Y. C., Hsu, C. C. H., and Polcari, M. R., “A High-Performance 0.25 μm CMOS Tehcnology: II-Technology,” IEEE Transactions on Electron Devices, vol. 39., pp. 967975, 1992.Google Scholar
[8] Scherrer, D., Kruse, J., Laskar, J., Feng, M., Wada, M., Takano, C., and Kasahara, J., “Low-Power Performance of 0.5 μm JFET for Low-Cost MMIC's in Personal Communications,” IEEE Electron Device Letters, vol. 14, pp. 428430, 1993.Google Scholar
[9] Baca, A. G., Zolper, J. C., Sherwin, M. E., Robertson, P. J., Shul, R. J., Howard, A. J., Rieger, D. J., and Klem, J. F., “Complementary GaAs Junction-Gated Heterostructure Field Effect Transistor Technology,” IEEE GaAs IC Symposium Technical Digest, pp. 5962, 1994.Google Scholar
[10] Sherwin, M. E., Zolper, J. C., Baca, A. G., Shul, R. J., Howard, A. J., Rieger, D. J., Klem, J. F., and Hietala, V. M., “An All Implanted Self-Aligned Enhancement Mode n-JFET with Zn Gates for GaAs Digital Applications,” IEEE Electron Device Letters, vol. 15, pp. 242244, 1994.Google Scholar
[11] Zolper, J. C., Sherwin, M. E., Baca, A. G., Shul, R. J., Klem, J. F., and Hietala, V. M., “Enhanced High Frequency Performance in a GaAs, Self-Aligned, n-JFET Using a Carbon Buried p-Implant,” IEEE Electron Device Letters, vol 5, pp. 493495, 1994.Google Scholar
[12] Zolper, J. C., Baca, A. G., and Chalmers, S. A., “Thermally Stable Oxygen Implant Isolation of p-type Al0.2Ga0.8As,” Applied Physics Letters, vol. 62, pp. 25362538, 1993.Google Scholar
[13] Shul, R. J., Rieger, D. J., Baca, A. G., Constantine, C., and Barratt, C., “Anisotropic Electron Cyclotron Resonance Etching of Tungsten Films on GaAs.,” Electronics Letters, vol. 30, pp. 8485, 1994.Google Scholar
[14] Shul, R. J., Baca, A. G., Rieger, D. J., and Howard, A. J., “Anisotropic Etching of WSi Films on GaAs,” Electronics Letters, vol. 31, pp. 317318, 1995.Google Scholar
[15] Shul, R. J., Sherwin, M. E., Baca, A. G., Zolper, J. C., and Rieger, D. J., “Short Gate Etching of W/WSi Bilayer Gates,” Electronics Letters, vol 32, pp. 7071, 1996.Google Scholar
[16] Sherwin, M. E., Zolper, J. C., Baca, A. G., Drummond, T. J., Shul, R. J., Howard, A. J., Rieger, D. J., Schneider, R. P., and Klem, J. F., “Comparison of Mg and Zn Gate Implants for GaAs n-channel Junction Field Effect Transistors,” Journal of Electronic Materials, vol. 23, pp. 809818, 1994.Google Scholar
[17] Lahav, A. G., Wu, C. S., and Baiocchi, F. A., “WSix Refractory Metallization for GaAs Metal-Semiconductor Field Effect Transistors,” J. Vac. Sci. Technol., vol. B6, pp. 17851795.Google Scholar
[18] Zolper, J. C., Baca, A. G., Sherwin, M. E., and Shul, R. J., “High Performance GaAs JFET with a Shallow Implanted Cd-Gate,” Electronics Letters, vol. 31, pp. 923924, 1995.Google Scholar
[19] Baca, A. G., Howard, A. J., Shul, R. J., and Sherwin, M. E., “Trenching Observed During Sidewall Formation in GaAs Self-Aligned Refractory Gate FETs,” Electronics Letters, vol. 32, p. 7475, 1996.Google Scholar
[20] Ruden, P. P., Shur, M., Arch, D. K., Daniels, R. R., Grider, D. E., Nohava, T. E., “Quantum-Well p-Channel A1GaAs/InGaAs/GaAs Field Effect Transistors,” IEEE Trans. Elect. Devices, vol. 36, pp. 23712379, 1989.Google Scholar