Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-10T14:13:44.856Z Has data issue: false hasContentIssue false

Complex Oxide Interfaces: A Path to Design New Materials

Published online by Cambridge University Press:  18 May 2012

Hanns-Ulrich Habermeier*
Affiliation:
Max-Planck Institute for Solid State Research, Heisenbergstr 1 D 70569 Germany
Get access

Abstract

Heterostructures composed of transition metal oxides with strong electron correlation offer a unique opportunity to design new artificial materials whose electrical, magnetic and optical properties can be manipulated by tailoring the occupation of the d-orbitals of the transition metal in the compound. This possibility is an implication of symmetry constraints at interfaces with the consequence of a reconstruction of the coupled charge-, spin-, and orbital states of the constituents and their interactions. Novel architectures can be constructed showing functions well beyond charge density manipulations determining the functionality of conventional semiconductor heterostructures. Success in this endeavor requires the mastering of technological prerequisites such as structurally as well as chemically controlled interface preparation down to atomic scales. Additionally, a fundamental understanding of the modifications of the electronic structure at the interface imposed by structural boundary conditions and consequently by the constituent’s orbital occupation is required. A path towards a new generation of electronic devices with multiple functionalities can thus be opened by exploiting the correlation driven interface phenomena. In this paper, the technological challenges and experimental realizations along this concept are described with an emphasis of growth techniques based on the pulsed laser deposition method. As a case study, results of investigations of YBa2Cu3O7/La2/3Ca1/3MnO3superlattices are compiled and the conclusions regarding the orbital manipulation at the interface are used to pave the way for orbital engineering of oxides with electronic structures similar to the cuprates in order to find novel ordered quantum states at the interfaces including magnetism and superconductivity.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Klitzing, K. v. et al. ., Phys. Rev. Lett. 45, 494 (1980).CrossRefGoogle Scholar
Grünberg, P. et al. ., Phys. Rev. Lett. 85, 2442 (1986).CrossRefGoogle Scholar
Ohtomo, A. et al. ., Nature 427, 423, (2004)CrossRefGoogle Scholar
Reyren, N. et al. ., Science 317. 1196, (2007)CrossRefGoogle Scholar
Thiel, S. et al. ., Science 313, 1942, (2006).CrossRefGoogle Scholar
Chakhalian, J. et al. ., Nature Physics 2, 244246, (2006).CrossRefGoogle Scholar
Science 317, 1844, (2007)Google Scholar
MRS Bulletin 33 No 11 (2008)Google Scholar
Mannhart, J. et al. ., Science 327, 1607 (2010).CrossRefGoogle Scholar
Hwang, H. Y. et al. . Nature Materials 11, 103 (2012)CrossRefGoogle Scholar
Nakagawa, N. et al. . Nature Materials 5, 204 (2006)CrossRefGoogle Scholar
Takahashi, K. S. et al. . Appl. Phys. Lett. 79 1324 (2001)CrossRefGoogle Scholar
Ohtomo, A. et al. . Nature 419, 378 (2002)CrossRefGoogle Scholar
Gozar, A. et al. . Nature 455, 782 (2008)CrossRefGoogle Scholar
Ryazanov, V. V. et al. ., Phys. Rev. Lett., 86, 2427 (2001)CrossRefGoogle Scholar
Chakhalian, J. et al. ., Science 318, 1114, (2007).CrossRefGoogle Scholar
Sefrioui, Z. et al. ., J. Appl. Phys. 89, 8026, (2001).Google Scholar
Habermeier, H.-U. et al. ., Physica C 364, 298, (2001).CrossRefGoogle Scholar
Przyslupski, P. et al. ., Physica C 387, 40, (2003).CrossRefGoogle Scholar
Sefrioui, Z. et al. ., Appl. Phys. Lett. 81, 4568, (2002).CrossRefGoogle Scholar
Oh, B. et al. ., Phys. Rev. B 37, 78617864, (1988)CrossRefGoogle Scholar
Bormann, R. et al. ., Appl. Phys. Lett. 54, 2148, (1989)CrossRefGoogle Scholar
Somekh, R. E., et al. . In Concise Encyclopedia of Magnetic and Superconducting Materials, Evetts, J. (ed.), Pergamon Press, Oxford, 431, (1992).Google Scholar
Raistrick, I. D., et al. . In Interfaces in High Tc Supercon-ducting Systems, Shinde, S. L., and Rudman, A., (eds.), Springer-Verlag, Berlin, 28 (1994),Google Scholar
Habermeier, H.-U., Mat. Today, 10, 34 (2007)CrossRefGoogle Scholar
Dijkamp, D. et al. ., Appl. Phys. Lett 51, 619, (1987).CrossRefGoogle Scholar
Rijnders, G.J.H.M. et al. ., Appl. Phys. Lett. 70, 1888 (1997)CrossRefGoogle Scholar
Kuru, Y. et al. ., J. of Crystal Growth, 311, 3613, (2009)CrossRefGoogle Scholar
Sambri, A. et al. . , J. Appl. Phys. 104, 053304 (2008)CrossRefGoogle Scholar
Alexandrov, V. E. et al. . Europ. Phys. J. B 72, 53(2009)CrossRefGoogle Scholar
Bozovic, I. et al. ., Physica C, 235, 178, (1994)CrossRefGoogle Scholar
Eckstein, J. E. et al. ., MRS Bull. 19, 44 (1994)CrossRefGoogle Scholar
Maier, J., Phys. Chem Chem Phys., 11, 3011 (2009)CrossRefGoogle Scholar
Vollmann, M. et al. ., J. Am. Ceram. Soc. 77, 235 (1994)CrossRefGoogle Scholar
Sata, N. et al. ., Nature 408, 946, (2000)CrossRefGoogle Scholar
Tschoppe, A., J. Electroceramics, 14, 5 (2005)CrossRefGoogle Scholar
Mannhart, J. and Hilgenkamp, H., Supercond. Sci. Technol. 10, 880, (1997)CrossRefGoogle Scholar
Schmehl, A. et al. .Europhys. Lett. 47, 110 (1999)CrossRefGoogle Scholar
Pavlenko, N. et al. . Phys. Rev. B 85, 020407 (2012)CrossRefGoogle Scholar
Caviglio, A.D. et al. . Nature 456, 624 (2008)CrossRefGoogle Scholar
Okamoto, S. and Millis, A. J., Nature 428, 630 (2004)CrossRefGoogle Scholar
Willmott, P.R. et al. . Phys. Rev. Lett. 99, 155502 (2007)CrossRefGoogle Scholar
Siemons, W. et al. . Phys. Rev. Lett. 98, 196802 (2007)CrossRefGoogle Scholar
Habermeier, H.-U. et al. . J. of Supercond. 15, 425, (2002).CrossRefGoogle Scholar
Habermeier, H.-U. et al. ., Transactions of J-MRS. 29 1422, (2004).Google Scholar
Chaloupka, J. et al. ., Phys. Rev. Lett. 100, 016404 (2008).CrossRefGoogle Scholar
Hansmann, P. et al. ., Phys. Rev, Lett. 103, 016401 (2009)CrossRefGoogle Scholar
Koster, G. et al. . Appl. Phys. Lett 73, 2920 (1998)CrossRefGoogle Scholar
Boris, A. V. et al. . Science 332, 937 (2011).CrossRefGoogle Scholar
Benckiser, E. et al. . Nature Mat 10, 189 (2011).CrossRefGoogle Scholar