Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2025-01-05T01:07:36.039Z Has data issue: false hasContentIssue false

Consolidation and Mechanical Properties of Mechanically Alloyed Al-Mg Powders

Published online by Cambridge University Press:  01 February 2011

Mira Sakaliyska
Affiliation:
m.sakaliyska@ifw-dresden.de, United States
Sergio Scudino
Affiliation:
s.scudino@ifw-dresden.de, IFW Dresden, Dresden, Germany
Hoang Viet Nguyen
Affiliation:
viet4777@mail.hut.edu.vn, University of Ulsan, Ulsan, Korea, Republic of
Kumar Babu Surreddi
Affiliation:
k.b.surreddi@ifw-dresden.de, IFW Dresden, Dresden, Germany
Birgit Bartusch
Affiliation:
b.bartusch@ifw-dresden.de, IFW Dresden, Dresden, Germany
Fahad Ali
Affiliation:
f.ali@ifw-dresden.de, IFW Dresden, Dresden, Germany
Ji Soon Kim
Affiliation:
jskim@mail.ulsan.ac.kr, University of Ulsan, Ulsan, Korea, Republic of
Jürgen Eckert
Affiliation:
j.eckert@ifw-dresden.de, IFW Dresden, Dresden, Germany
Get access

Abstract

Nanostructured Al-Mg bulk samples with compositions in the range of 10 – 40 at.% Mg have been produced by consolidation of mechanical alloyed powders. Powders with composition Al90Mg10 and Al80Mg20 were consolidated into highly dense specimens by hot extrusion. Room temperature compression tests for the Al90Mg10 specimen reveal interesting mechanical properties, namely, a high strength of 630 MPa combined with a plastic strain of about 4 %. The increase of the Mg content to 20 at.% increases the strength by about 100 MPa but it suppresses plastic deformation. The Al60Mg40 powder was consolidated at different temperatures by spark plasma sintering and the effect of the sintering temperature on microstructure, density and hardness have been studied. The results reveal that both density and hardness of the consolidated samples increase with increasing sintering temperature, while retaining a nanocrystalline structure. These results indicate that powder metallurgy is a suitable processing route for the production of nanocrystalline Al-Mg alloys with promising mechanical properties.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Gleiter, H., Prog. Mater. Sci. 33, 223 (1989).Google Scholar
2. Siegel, R. W. in Mechanical Properties and Deformation Behavior of Materials Having Ultrafine Microstructures, edited by Nastasi, M., Parkin, D. M., and Gleiter, H. (NATO ASI Series, Kluwer, Dordrecht, 1993).Google Scholar
3. Edelstein, A. S. and Cammarata, R. C., Nanomaterials: Synthesis, Properties and Applications, (IOP Publishing, Bristol, 1996).Google Scholar
4. Nanostructured Materials: Processing, Properties and Potential Applications, edited by C. C. Koch, (Noyes Publications/William Andrew Publising, Norwich, NY 2002).Google Scholar
5. Eckert, J., Mater. Sci. Eng. A 226, 364 (1997).Google Scholar
6. Scudino, S., Eckert, J., Yang, X. Y., Sordelet, D. J. and Schultz, L., Intermetallics 15, 571 (2007).Google Scholar
7. Koch, C. C., “Mechanical Milling and Alloying”, in Materials Science and Technology vol. 15, edited by Cahn, R. W., Haasen, P. and Kramer, E.J., (VCH Verlagsgesellschaft, Weinheim, 1991).Google Scholar
8. Suryanarayama, C., Mechanical Alloying and Milling, (Marcel Dekker, New York, 2004).Google Scholar
9. Zhou, F., Liao, X. Z., Zhu, Y. T., Dallek, S. and Lavernia, E. J., Acta Mater. 51, 2777 (2003).Google Scholar
10. Park, Y. S., Chung, K. H., Kim, N. J. and Lavernia, E. J., Mater Sci Eng A 374, 211 (2004).Google Scholar
11. Fan, G. J., Wang, G. Y., Choo, H., Liaw, P. K., Park, Y. S., Han, B. Q. and Lavernia, E. J., Scripta Mater. 52, 929 (2005).Google Scholar
12. Youssef, K. M., Scattergood, R. O., Murty, K. L. and Koch, C. C., Scripta Mater. 54, 251 (2006).Google Scholar
13. Roisnel, T. and Rodríguez-Carvajal, J., Mater. Sci. Forum 378–381, 118 (2001).Google Scholar
14. Scudino, S., Sakaliyska, M., Surreddi, K. B. and Eckert, J., J. Alloys Compd. (in press).Google Scholar
15. Scudino, S., Sakaliyska, M., Surreddi, K. B. and Eckert, J., J. Phys.: Conf. Series (in press).Google Scholar
16. Pearson's Handbook of Crystallographic Data for Intermetallic Phases, edited by P. Villars and L. D. Calvert, (American Society for Metals, Metals Park (Oh), 1985).Google Scholar
17. Feuerbacher, M., Thomas, C., Makongo, J. P. A., Hoffmann, S. et al., Z. Kristallogr. 222, 259 (2007).Google Scholar
18. Dolinšek, J., Apih, T., Jeglič, P., Smiljanić, I., Bilušić, A., Bihar, Ž., Smontara, A., Jagličić, Z., Heggen, M. and Feuerbacher, M., Intermetallics 15, 1367 (2007).Google Scholar
19. Bauer, E., Kaldarar, H., Lackner, R., Michor, H., Steiner, W., Scheidt, E.-W., Galatanu, A., Marabelli, F., Wazumi, T., Kumagai, K. and Feuerbacher, M., Phys. Rev. B 76, 014528 (2007).Google Scholar
20. Roitsch, S., Heggen, M., Lipi?ska-Chwa?ek, M. and Feuerbacher, M., Intermetallics 15, 833 (2007).Google Scholar
21. Mamedov, V., Powder. Metall. 45, 322 (2002).Google Scholar
22. Davies, L. A., in Mechanical Behavior of Rapidly Solidified Materials, edited by Sastry, S. M. L. and MacDonald, B. A., (The Metallurgical Society, Warrendale, PA 1986).Google Scholar