Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-10T14:24:26.790Z Has data issue: false hasContentIssue false

Control of Iron Disilicide Crystal Structure by Using Liquid Phase Obtained by Au-Si Eutectic Reaction

Published online by Cambridge University Press:  04 February 2015

Kensuke Akiyama
Affiliation:
Kanagawa Industrial Technology Center, 705-1 Shimoimaizumi, Ebina, Kanagawa 243-0435, Japan Department of Innovative and Engineered Materials, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8502, Japan.
Yuu Motoizumi
Affiliation:
Kanagawa Industrial Technology Center, 705-1 Shimoimaizumi, Ebina, Kanagawa 243-0435, Japan
Hiroshi Funakubo
Affiliation:
Department of Innovative and Engineered Materials, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8502, Japan.
Get access

Abstract

The Au-Si liquid phase was obtained by melting the Si surface via Au-Si eutectic reaction, which contributed to the formation of semiconducting iron disilicide (β-FeSi2), on Au-coated Si(100) substrates. By coating a substrate with an Au layer of 60 nm or more, the Au-Si liquid phase covered the entire Si substrate surface, and single-phase β-FeSi2 was grown on Si(100) substrates. A clear photoluminescence spectrum of β-FeSi2 indicated the formation of high-quality crystals with a low density of the non-radiative recombination center in the grains.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Borisenko, V. ed., Semiconducting Silicides (Springer-Verlag, Berlin, 2000).CrossRefGoogle Scholar
Maeda, Y. ed., Science and Technology of Semiconducting Silicides and Related Materials (Shokabo, Tokyo, 2014)Google Scholar
Suemasu, T., Takakura, K., Li, C., Ozawa, Y., Kumagai, Y. and Hasegawa, F., Thin Solid Films, 461, 209 (2004).CrossRefGoogle Scholar
Liu, Z., Osamura, M., Oostuka, T., Wang, S., Fukuzawa, Y., Suzuki, Y., Kuroda, R., Mise, T., Otogawa, N., Nakayama, Y., Tanoue, H. and Makita, Y., Opt. Mater. 27, 942 (2005).CrossRefGoogle Scholar
Akiyama, K., Kaneko, S., Terai, Y., Maeda, Y. and Funakubo, H., Jpn. J. Appl. Phys. 44, L303 (2005).CrossRefGoogle Scholar
Maeda, Y., Terai, Y. and Itakura, M., Jpn. J. Appl. Phys. 44, 2502 (2004).CrossRefGoogle Scholar
Akiyama, K., Yokomizo, K., Kaneko, S. and Itakura, M., Appl. Surf. Sci. 256, 1244 (2009).CrossRefGoogle Scholar
Yamauchi, I., Nagase, T. and Ohnaka, I., J. Mater. Sic. 37, 1429 (2002).CrossRefGoogle Scholar
Hunt, T. D., Reeson, K. J., Gwilliam, R. M., Homewood, K. P., Wilson, R. J. and Sealy, B. J., J. Lumin. 57, 25 (1993).CrossRefGoogle Scholar
Martinelli, L., Grilli, E., Migas, D. B., Miglio, L., Marabelli, F., Soci, C., Geddo, M., Grimaldi, M. G. and Spinella, C., Phys. Rev. B 66, 085320 (2002).CrossRefGoogle Scholar
Maeda, Y., Terai, Y., Itakura, M. and Kuwano, N., Thin Solid Films 461, 160 (2004).CrossRefGoogle Scholar
Pankove, J. I., Optical Process in Semiconductor (Prentice-Hall, Englewood Cliffs, NJ, (1971).Google Scholar