Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2025-01-05T22:55:34.861Z Has data issue: false hasContentIssue false

Control of Thin Film Transistor Operations with Polar Self-Assembled Monolayers

Published online by Cambridge University Press:  01 February 2011

Y. Iwasa
Affiliation:
Institute for Material Reasearch, Tohoku University, Sendai 980-8577, Japan CREST, Kawaguchi 333-0012, Japan.
T. Nishikawa
Affiliation:
Institute for Material Reasearch, Tohoku University, Sendai 980-8577, Japan Japan Advanced Institute of Science and Technology, Ishikawa 923-1292, Japan.
S. Kobayashi
Affiliation:
Institute for Material Reasearch, Tohoku University, Sendai 980-8577, Japan CREST, Kawaguchi 333-0012, Japan.
T. Takenobu
Affiliation:
Institute for Material Reasearch, Tohoku University, Sendai 980-8577, Japan CREST, Kawaguchi 333-0012, Japan.
T. Shimoda
Affiliation:
Japan Advanced Institute of Science and Technology, Ishikawa 923-1292, Japan.
T. Mitani
Affiliation:
Japan Advanced Institute of Science and Technology, Ishikawa 923-1292, Japan.
K. Kubozono
Affiliation:
CREST, Kawaguchi 333-0012, Japan. Department of Chemistry, Okayama University, Okayama 700-8530, Japan.
Get access

Abstract

From the view point of materials sciences, one of the central issues in organic thin film transistors (TFTs) is the interface between different materials inherent in the device structure. For example, the interface between organic semiconductors and electrodes controls the carrier injection, while the interface between organic semiconductors and gate insulators governs the trap and carrier densities. Here, we show that interface modification with self-assembeld monolayers (SAMs) using polar organosilane molecules offers novel functions in organic TFTs. SAMs on SiO2 gate dielectrics was found to the carrier density at the conduction channel, while the adsorbed SAMs molecules on metal electrodes causes an ambipolar operation in fullerene TFTs. These interface modification techniques, since they are low temperature processes, provide novel opportunities for improving device manufacturing processes.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Lin, Y-Y., Gundlach, D. J., Nelson, S. F., and Jackson, T. N., IEEE Electron Device Lett. 18, 606 (1997).Google Scholar
2 Campbell, I. H., Rubin, S., Zawodzinski, T. A., Kress, J. D., Martin, R. L., Smith, D. L., Barashkov, N. N., Ferraris, J. P., Phys. Rev. B54, R14321 (1996), I. H. Cambell, J. D. Kress, R. L. Martin, and D. L. Smith, Appl. Phys. Lett. 71, 3528 (1997).Google Scholar
3 Kobayashi, S., Nishikawa, T., Takenobu, T., Mori, S., Shimoda, T., Mitani, T., Shimotani, H., Yoshimoto, N., Ogawa, S., and Iwasa, Y., Nat. Mater. 3, 317 (2004).Google Scholar
4 Nishikawa, T., Kobayashi, S., Nakanowatari, T., Mitani, T., and Shimoda, T., Kubozono, Y., Yamamoto, G., Ishii, H., Niwano, M., and Iwasa, Y., J. Appl. Phys. in press.Google Scholar
5 Gundlach, D. J., Nichols, J. A., Zhou, L., and Jackson, T. N., Appl. Phys. Lett. 80, 2925 (2002).Google Scholar
6 Kong, J. and Dai, H., J. Phys. Chem. 105, 2890 (2001).Google Scholar
7 Minakata, T., Imai, H., Ozaki, M. and Saco, K.. J. Appl. Phys. 72, 5220 (1992), T. Ito, T. Mitani, T. Takenobu, and Y. Iwasa, J. Phys. Chem. Solids 65, 609 (2004).Google Scholar
8 Kubozono, Y., Takabayashi, Y., Shibata, K., Kanbara, T., Fujiki, S., Kashino, S., Fujiwara, A., and Emura, S., Phys. Rev. B67, 115410 (2003).Google Scholar
9 Morikawa, Y., Ishii, H., and Seki, K., Phys. Rev. B69, 041403 (2004).Google Scholar