Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-15T02:55:06.705Z Has data issue: false hasContentIssue false

Controlling microscopic friction on gold surfaces by electrochemical potential

Published online by Cambridge University Press:  03 February 2012

Florian Hausen
Affiliation:
INM – Leibniz-Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany
Johannes A. Zimmet
Affiliation:
INM – Leibniz-Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany
Roland Bennewitz
Affiliation:
INM – Leibniz-Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany
Get access

Abstract

The nano-scale friction on crystalline gold surfaces can be systematically varied by changing the oxidation state of the surfaces through an applied electrochemical potential. We present experimental results from high-resolution friction force microscopy, where the atomic structure of the surface is reflected in lateral force maps. While the oxidation of gold surfaces always brings upon a significant increase in friction, the situation is more complex in the potential regime where only sulfate anions are adsorbed. The influence of adsorbed anions on friction depends on electrochemical potential and on normal load, demonstrating that electrochemical processes and sliding dynamics are altered in the confinement of the tip-sample contact.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Szlufarska, I., Chandross, M., and Carpick, R. W., Journal of Physics D-Applied Physics 41 (2008)Google Scholar
[2] Nishizawa, T., Nakada, T., Kinoshita, Y., Miyashita, S., Sazaki, G., and Komatsu, H., Surface Science 367 (1996) L73.Google Scholar
[3] Manne, S., Hansma, P. K., Massie, J., Elings, V. B., and Gewirth, A. A., Science 251 (1991) 183.Google Scholar
[4] Kautek, W., Dieluweit, S., and Sahre, M., Journal of Physical Chemistry B 101 (1997) 2709.Google Scholar
[5] Nielinger, M. and Baltruschat, H., Physical Chemistry Chemical Physics 9 (2007) 3965.Google Scholar
[6] Hausen, F., Nielinger, M., Ernst, S., and Baltruschat, H., Electrochimica Acta 53 (2008) 6058.Google Scholar
[7] Labuda, A., Paul, W., Pietrobon, B., Lennox, R. B., Grutter, P. H., and Bennewitz, R., Review of Scientific Instruments 81 (2010)Google Scholar
[8] Labuda, A., Hausen, F., Gosvami, N. N., Grutter, P. H., Lennox, R. B., and Bennewitz, R., Langmuir 27 (2011) 2561.Google Scholar
[9] Hausen, F., Gosvami, N. N., and Bennewitz, R., Electrochimica Acta (in press 2011) doi:10.1016/j.electacta.2011.03.013 Google Scholar
[10] Conway, B. E., Progress in Surface Science 49 (1995) 331.Google Scholar