Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-15T06:47:29.779Z Has data issue: false hasContentIssue false

Copper damascene using low dielectric constant fluorinated amorphous carbon interlayer

Published online by Cambridge University Press:  10 February 2011

Y. Matsubara
Affiliation:
ULSI Device Development Laboratories, NEC Corporation, 1120 Shimokuzawa, Sagamihara, Kanagawa, 229, Japan
K. Endo
Affiliation:
Silicon Systems Research Laboratories, NEC Corporation, 34 Miyukigaoka, Tsukuba, Ibaraki, 305, Japan
M. Iguchi
Affiliation:
ULSI Device Development Laboratories, NEC Corporation, 1120 Shimokuzawa, Sagamihara, Kanagawa, 229, Japan
N. Ito
Affiliation:
ULSI Device Development Laboratories, NEC Corporation, 1120 Shimokuzawa, Sagamihara, Kanagawa, 229, Japan
K. Aoyama
Affiliation:
Silicon Systems Research Laboratories, NEC Corporation, 34 Miyukigaoka, Tsukuba, Ibaraki, 305, Japan
T. Tatsumj
Affiliation:
Silicon Systems Research Laboratories, NEC Corporation, 34 Miyukigaoka, Tsukuba, Ibaraki, 305, Japan
T. Horiuchi
Affiliation:
ULSI Device Development Laboratories, NEC Corporation, 1120 Shimokuzawa, Sagamihara, Kanagawa, 229, Japan
Get access

Abstract

We have developed a new interconnect technique using a low-k (εt,=2.5) organic interlayer (fluorinated amorphous carbon: a-C:F) and a low-resistivity metal line (copper). The new technique attains a duction in both the capacitance of the interlayer and the resistance of the metal line. We found that a-C:F on Cu reduces reflection to 10% for Kr-F line lithography. However, a-C:F cannot act as a protection layer for oxidation even at 200°C in atmospheric ambient annealing. Cu diffusion into a-C:F is about 100 nm at the annealing temperature of 450°C. The resistivity of the Cu line is 2.3–2.4 μΩ · cm for the 0.5-μm line width. Although the leakage current of the a-C:F ILD is one order higher than that of the SiO2 ILD, electrical isolation is acceptable at < 20 V when annealing is carried out at 350°C in a vacuum.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Uttecht, Ronald R., and Gefiken, Robert M., VMIC Confererence pp.2026. (1991).Google Scholar
[2] Edelstein, D., Heidenrich, J., Goldblatt, R., Cote, W., Uzoh, C., Lustig, N., Roper, P., McDevitt, T., Motsiff, W., Simon, A., Dukovic, J., Wachnik, R., Rathore, H., Schulz, R., Su, L., Lute, S., and Slattery, J., International Electron Device Meeting pp. 773776 (1997).Google Scholar
[3] Endo, K., and Tatsumi, T., J. Appl. Phys. 78, 13701372, (1995).Google Scholar
[4] Endo, K., and Tatsumi, T., MRS Symposium Proc. 381, pp. 249254. (1995).Google Scholar
[5] Mountsier, T.W., and Kumar, D.,. MRS Symposium proceedings 443, pp. 4146 (1996).Google Scholar
[6] Grill, A., Patel, V., Cohen, S., Edelstein, D.C., Paraszczak, J.R., and Jahnes, C., MRS Symposium proceedings 443, Boston, pp. 155164. (1996).Google Scholar
[7] Endo, K., Tatsumi, T., and Matsubara, Y., Appl. Phys. Lett 70, pp. 10781079 (1997).Google Scholar
[8] Endo, K., and Tatsumi, T.. Appl Phys. ett. 70, 26162618. (1997).Google Scholar
[9] Theit, J. A., Mertz, F., Yairi, M., Seaward, K., Ray, G., and Kooi, G.. Abst. MRS Spring Meeting, Symposium N, (1997).Google Scholar
[10] Robles, S. A., Vasquez, L., Eizenberg, M., and Moghadam, F., Abst. MRS Spring Meeting, Symposium N, (1997).Google Scholar
[11] Matsubara, Y., Endo, K., Tatsumi, T., and Horiuchi, T., Abst. MRS Spring Meeting, Sym. N, (1997).Google Scholar
[12] Iguchi, M., et al., VMIC Conference, p. 411, (1996).Google Scholar
[13] Gardner, D., et.al., VMIC Conference, p. 99 (1991).Google Scholar
[14] Purser, R. G., Strane, J. W. and Mayer, J. W., MRS Symp. Proc., 309, p. 481 (1993).Google Scholar