Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2025-01-04T02:10:25.735Z Has data issue: false hasContentIssue false

Copper Sulfide Assisted Recrystallization of Cu-poor CuInS2 Observed in-situ by Polychromatic X-ray Diffraction

Published online by Cambridge University Press:  31 January 2011

Humberto Rodriguez-Alvarez
Affiliation:
humberto.rodriguez@helmholtz-berlin.de, Helmholtz Zentrum Berlin für Materialien und Energie, Berlin, Germany
R. Mainz
Affiliation:
roland.mainz@helmholtz-berlin.de, Helmholtz Zentrum Berlin für Materialien und Energie, Berlin, Germany
A. Weber
Affiliation:
alfons.weber@helmholtz-berlin.de, Helmholtz Zentrum Berlin für Materialien und Energie, Berlin, Germany
B. Marsen
Affiliation:
Bjoern.marsen@helmholtz-berlin.de, Helmholtz Zentrum Berlin für Materialien und Energie, Berlin, Germany
H.W. Schock
Affiliation:
hans-werner.schock@helmholtz-berlin.de, Helmholtz Zentrum Berlin für Materialien und Energie, Berlin, Germany
Get access

Abstract

The microstructural changes during heating of bi-layers of Cu-poor CuInS2 and CuS under different sulfur excess conditions were studied. This was done by means of energy dispersive X-ray diffraction of polychromatic synchrotron radiation in a vacuum setup where the sulfur pressure conditions can be controlled. Understood as the formation of a new microstructure, the recrystallization of the Cu-poor CuInS2 phase was characterized by a change in the reflection profile (from Cauchy-type to Gauss-type), the reduction of the breadth and a subsequent normalized-intensity increase of the 112 reflection. The Cauchy component of the breadth was used to monitor the recrystallization under different sulfur and heating rate conditions. The main results are: a) Cu availability for the consumption of the CuIn5S8 phase is a pre-requisite for recrystallization, b) in presence of the Cu2-xS phase, increased sulfur pressure enhances recrystallization.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Klenk, R. Walter, T. Schock, H. W. and Cahen, D. Advanced Materials 5 (2), 114 (1993).Google Scholar
2. Garcia, J. Alvarez, Perez-Rodriguez, A., Romano-Rodriguez, A., Morante, J. R. Calvo-Barrio, L., Scheer, R. and Klenk, R. Journal of Vacuum Science and Technology A 19, 232 (2001).Google Scholar
3. Schlenker, T. Valero, M. Luis, Schock, H. W. and Werner, J. H. Journal of Crystal Growth 264, 178 (2004).Google Scholar
4. Rodriguez-Alvarez, H., Koetschau, I. M. and Schock, H. W. Journal of Crystal Growth 310 (15), 3638 (2008).Google Scholar
5. Oliveria, M. McMullan, R. K. and Wuensch, B. J. Solid State Ionics 28, 1332 (1988).Google Scholar
6. Delhez, R. de, T. H. Keijser and Mittemeijer, E. J. Fresenius Zeitschrift für Analytische Chemie 312, 1 (1982).Google Scholar
7. Halder, N. C. and Wagner, C. N. J. Acta Crystallographica 20, 312 (1966).Google Scholar
8. Rodriguez-Alvarez, H., IM, K. Genzel, C. and Schock, H. W. Thin Solid Films 517 (7), 2140 (2009).Google Scholar
9. Will, G. E. Hinze and A. Rahman Abdelrahman, M. European Journal of Mineralogy 14, 591 (2002).Google Scholar