Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-15T07:12:59.781Z Has data issue: false hasContentIssue false

Cross-Sectional Scanning Tunneling Microscopy of III-V Heterostructures Grown by Molecular-Beam Epitaxy

Published online by Cambridge University Press:  22 February 2011

A.Y. Lew
Affiliation:
University of California at San Diego, Department of Electrical and Computer Engineering, La Jolla, CA 92093-0407
E.T. Yu*
Affiliation:
University of California at San Diego, Department of Electrical and Computer Engineering, La Jolla, CA 92093-0407
D.H. Chow
Affiliation:
Hughes Research Laboratories, Malibu, CA 92065
R.H. Miles
Affiliation:
Hughes Research Laboratories, Malibu, CA 92065
*
Author to whom all correspondence should be addressed
Get access

Abstract

Cross-sectional scanning tunneling microscopy and spectroscopy have been used to characterize InAs/Ga1-x InxSb strained-layer superlattices grown by molecular-beam epitaxy. Atomic-resolution constant-current images of the epitaxial layers reveal monolayer roughness at the superlattice interfaces. An asymmetry in electronic structure between interfaces in which InAs has been grown on Ga1-x InxSb and those in which Ga1-x InxSb has been grown on InAs has also been observed in these images. Close inspection of the images reveals increased growthdirection lattice spacings in the Ga1-x InxSb layers compared to the InAs layers, as well as even larger lattice spacings at the InAs/Ga1-x InxSb interfaces. The latter is consistent with the formation of primarily InSb-like interfaces. Current-voltage spectra obtained while tunneling into the superlattice layers are found to be strongly influenced by extended superlattice electronic states.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Smith, D. L. and Mailhiot, C., J. Appl. Phys. 62, 2545 (1987).Google Scholar
2 Chow, D. H., Miles, R. H., Soderstrom, J. R., and McGill, T. C., Appl. Phys. Lett. 56, 1418 (1990).Google Scholar
3 Miles, R. H., Chow, D. H., and Hamilton, W. J., J. Appl. Phys. 71, 211 (1992).Google Scholar
4 Chow, D. H., Miles, R. H., and Hunter, A. T., J. Vac. Sci. Technol. B10, 888 (1992).Google Scholar
5 Tuttle, G., Kroemer, H., and English, J. H., J. Appl. Phys. 67, 3032 (1990).Google Scholar
6 Hosaka, S., Hosoki, S., Takata, K., Horiuchi, K., and Natsuaki, N., Appl. Phys. Lett. 53, 487 (1988).Google Scholar
7 Kordic, S., Loenen, E. J. van, Dijkkamp, D., Hoeven, A. J., and Moraal, H. K., J. Vac. Sci. Technol. A 8, 549 (1990).Google Scholar
8 Johnson, M. B. and Halbout, J.-M., J. Vac. Sci. Technol. B 10, 508 (1992).Google Scholar
9 Yu, E. T., Johnson, M. B., and Halbout, J.-M., Appl. Phys. Lett. 61, 201 (1992).Google Scholar
10 Yu, E. T., Halbout, J.-M., Powell, A. R., and Iyer, S. S., Appl. Phys. Lett. 61, 3166 (1992).Google Scholar
11 Feenstra, R. M., Yu, E. T., Woodall, J. M., Kirchner, P. D., Lin, C. L., and Pettit, G. D., Appl. Phys. Lett. 61, 795 (1992).Google Scholar
12 Gwo, S., Smith, A. R., Shih, C. K., Sadra, K., and Streetman, B. G., Appl. Phys. Lett. 61, 1104 (1992).Google Scholar
13 Albrektsen, O., Arent, D. J., Meier, H. P., and Salemink, H. W., Appl. Phys. Lett. 57, 31 (1990).Google Scholar
14 Johnson, M. B., Maier, U., Meier, H. P., and Salemink, H. W. M., Appl. Phys. Lett. 63, 1273 (1993).Google Scholar
15 Gwo, S., Chao, K. J., Shih, C. K., Sadra, K., and Streetman, B. G., Phys. Rev. Lett. 71, 1883 (1993).Google Scholar
16 Miles, R. H., Schulman, J. N., Chow, D. H., and McGill, T. C., Semicond. Sci. Technol. 8, S102 (1993).Google Scholar
17 Feenstra, R. M., Stroscio, J. A., Tersoff, J., and Fein, A. P., Phys. Rev. Lett. 58, 1192 (1987).Google Scholar
18 Feenstra, R. M., Collins, D. A., Ting, D. Z.-Y., Wang, M. W., and McGill, T. C., presented at the 21st Conference on the Physics and Chemistry of Semiconductor Interfaces, New Paltz, New York (1994).Google Scholar
19 Miles, R. H., Schulman, J. N., and Yu, E. T., unpublished.Google Scholar