No CrossRef data available.
Published online by Cambridge University Press: 22 February 2011
Cross-sectional scanning tunneling microscopy and spectroscopy have been used to characterize InAs/Ga1-x InxSb strained-layer superlattices grown by molecular-beam epitaxy. Atomic-resolution constant-current images of the epitaxial layers reveal monolayer roughness at the superlattice interfaces. An asymmetry in electronic structure between interfaces in which InAs has been grown on Ga1-x InxSb and those in which Ga1-x InxSb has been grown on InAs has also been observed in these images. Close inspection of the images reveals increased growthdirection lattice spacings in the Ga1-x InxSb layers compared to the InAs layers, as well as even larger lattice spacings at the InAs/Ga1-x InxSb interfaces. The latter is consistent with the formation of primarily InSb-like interfaces. Current-voltage spectra obtained while tunneling into the superlattice layers are found to be strongly influenced by extended superlattice electronic states.