Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2025-01-01T05:26:06.808Z Has data issue: false hasContentIssue false

Crystal Structures of SrBi2Ta2O9 and Sr0.8Bi2.2Ta2O9 Ferroelectric Materials

Published online by Cambridge University Press:  10 February 2011

Y. Shimakawai
Affiliation:
Fundamental Research Laboratories, NEC Corporation, Tsukuba 305-8501, Japanshimak@frl.cl.nec.co.jp
Y. Nakagawa
Affiliation:
Institute for Materials Science, University of Tsukuba, Tsukuba 305-8577, Japan
Y. Kubo
Affiliation:
Fundamental Research Laboratories, NEC Corporation, Tsukuba 305-8501, Japan
T. Kamiyama
Affiliation:
Institute for Materials Science, University of Tsukuba, Tsukuba 305-8577, Japan
H. Asano
Affiliation:
Institute for Materials Science, University of Tsukuba, Tsukuba 305-8577, Japan
Get access

Abstract

Structural and ferroelectric properties of stoichiometric SrBi2Ta2O9 and Sr-deficient-and-Bi-excess Sr0.8Bi2.2Ta2O9 bulk ceramics materials are studied. The ferroelectric Curie temperatures for SrBi2Ta2O9 and Sr0.8Bi2.2Ta2O9 are 300 and 400°C, respectively. Structure analysis by neutron powder diffraction reveals that Bi2O2 layer and TaO6 octahedra are considerably distorted and that atomic displacement along the a-axis causes ferroelectric spontaneous polarization. In Sro8Bi22Ta2O9, both Bi-substitution and cation-vacancies exist at the Sr-site. The calculated polarization of Sr0.8Bi2.2Ta2O9 is higher than that of the stoichiometric sample, which is consistent with observations of remanent polarization in thin-film capacitors. The Bi-substitution and the cation-vacancies at the Sr site enhance structural distortion in the TaO6 octahedron and lead to the higher Curie temperature and the higher ferroelectric spontaneous polarization.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Araujo, C. A-Paz de, Cuchiaro, J. D., McMillan, L. D., Scott, M. C., and Scott, J. F., Nature 374, 627 (1995).Google Scholar
[2] Amanuma, K., Hase, T., and Miyasaka, Y., Appl. Phys. Lett. 66, 221 (1995).Google Scholar
[3] Atsuki, T., Soyama, N., Yonezawa, T., and Ogi, K., Jpn. J. Appl. Phys. 34, 5096 (1995).Google Scholar
[4] Noguchi, T., Hase, T., and Miyasaka, Y., Jpn. J. Appl. Phys. 35, 4900 (1996).Google Scholar
[5] Subbarao, E.C., J. Phys. Chem. Solids 23, 665 (1962).Google Scholar
[6] Kamiyama, T., Oikawa, K., Tsuchiya, N., Osawa, M., Asano, H., Watanabe, N., Furusaka, M., Satoh, S., Fujikawa, I., Ishigaki, T., and Izumi, F., Physica B 213–214, 875 (1995).Google Scholar
[7] Ohta, T., Izumi, F., Oikawa, K., and Kamiyama, T., Physica B 234–236, 1093 (1997).Google Scholar
[8] Newnham, R.E., Wolfe, R. W., Horsey, R. S., Diaz-Colon, F. A., and Kay, M. I., Mat. Resea. Bull. 8, 1183 (1973).Google Scholar
[9] Rae, A.D., Thompson, J. G., and Withers, R. L., Acta Cryst. B 48, 418 (1992).Google Scholar
[10] Shimakawa, Y., Nakagawa, Y., Kubo, Y., Kamiyama, T., Asano, H., and Izumi, F. (submitted to Appl. Phys. Lett.).Google Scholar