Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-15T06:52:46.302Z Has data issue: false hasContentIssue false

Crystallization Behavior of a Ferri-Silicate α-Waste Glass

Published online by Cambridge University Press:  28 February 2011

A. D. Stalios
Affiliation:
Materials Physics Department, S.C.K./C.E.N., B-2400 Mol, Belgium
R. De Batist
Affiliation:
Also Rijksuniversitair Centrum Antwerpen, B-2020 Antwerpen, Belgium
Get access

Abstract

The crystallization behavior of a ferri-silicate α-waste glass was studied by means of several experimental techniques. The main crystal phase showed a plate-like morphology and was identified as a monoclinic pyroxene. The Johnson-Mehl-Avrami equation was used for the determination of the kinetic parameters of the process. Following both isothermal and non-isothermal techniques, the Avrami exponent, n, was found to be nearly one. The activation energy for crystal growth is Eg = 356 kJ mole−1. The crystallization process is governed by instantaneous nucleation and diffusion controlled two dimensional growth.

Type
Research Article
Copyright
Copyright © Materials Research Society 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Augis, J.A. and Bennet, , J. of Therm. Analysis 13, 283 (1978).Google Scholar
2. Rogers, P.S., Minerological Magazine 37, n° 291, 741 (1970).Google Scholar
3. Yinnon, H. and Uhlmann, D.R., J. of Non-Cryst. Solids 54, 253 (1983).Google Scholar
4. Piloyan, G.O., Nature 212, 1229 (1966).Google Scholar
5. Chen, H.S., J. of Non-Cryst. Solids 27, 257 (1978).Google Scholar
6. Matusita, K., Komatsu, T. and Yokota, R., J. Mat. Science 19, 291 (1984).Google Scholar
7. Matusita, K. and Sakka, S., Phys. Chem. of Glasses 20, 81 (1979).Google Scholar
8. Marotta, A., Buri, A. and Branda, F., Thermochem. Acta 40, 397 (1980).Google Scholar
9. Johnson, W.A. and Mehl, R.F., Amer. Inst. Min. Eng. 135, 416 (1939).Google Scholar
10. Avrami, M., J. Chem. Physics 7, 1103 (1939).Google Scholar
11. Shelestak, L.J., Chavez, R.A. and Mackenzie, J.D., J. of Non-Cryst. Solids 27, 83 (1978).Google Scholar
12. Kouppa, V., Phys. Chem. of Glasses 20, n° 4, 85 (1979).Google Scholar
13. Van de Voorde, N. et al., STI/TUB/6–9 2, Proceedings of an international conference on radioactive waste management, (Seattle, U.S.A., May 1983), edited by I.A.E.A., p. 347.Google Scholar
14. Beall, G.H. and Rittler, H.L., Am. Cer. Soc. Bulletin 55, n° 6, 579 (1976).Google Scholar
15. Chick, A.L., Cokken, R.O. and Thomas, L.E., Am. Cer. Soc. Bulletin 62, n° 4, 505 (1983).Google Scholar
16. Mandelkern, L., Crystallization of polymers, (Mc Graw Hill Book Company, New York, 1964), p. 215.Google Scholar
17. Geodakyan, A., Stepayan, S.V., Fisika i Khimiya Stekla 8, n° 5, 622 (1982) (Plenum Publishing Corporation, 1983).Google Scholar
18. Burke, J., La Cinétique des changements de phase dans les métaux, (Masson, Paris, 1968) p. 209.Google Scholar