Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-14T05:07:35.820Z Has data issue: false hasContentIssue false

Cubic Boron Nitride Crystals Grown at High Pressure: PN Junction, Crystallographic Polarity and Some Properties

Published online by Cambridge University Press:  26 February 2011

Osamu Mishima*
Affiliation:
National Institute for Research in Inorganic Materials, 1-1, Namiki, Tsukuba, Ibaraki 305, Japan
Get access

Abstract

Studies on the cubic boron nitride (cBN) crystals grown by the temperature difference method at high pressure are reviewed. The electron beam induced current measurement, the electrical measurement, and the optical measurement demonstrated that the cBN is a good potential candidate as a wide-gap semiconductor material. The Raman spectrum and the reflectance and transmittance spectra of the cBN were obtained. The crys-tallographic polarity of cBN crystals was directly determined from the Rutherford backscattering spectroscopy (RBS).

The RBS experiment showed that the (111) surface which adjoins to the (100) surface at an obtuse angle so that the edge between the (111) and the (100) is parallel to the <110> direction of striations on the (100) face is a triply bonded nitrogen-terminating face. The result seems to disagree with that derived from other semiconductor compounds.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Wentorf, R.H. Jr, J. Chem. Phys. 26, 956 (1957).Google Scholar
2. Bundy, F.P., Hall, H.T., Strong, H.M., and Wentorf, R.H. Jr, Nature 176, 51 (1955).Google Scholar
3. Wentorf, R.H. Jr, J. Chem. Phys. 34, 809 (1961).Google Scholar
4. DeVries, R.C., Report No. 72 CRD 178 (General Electric Corporation, Schenectady, NY, 1972).Google Scholar
5. Weiss, R.J., Phil. Mag. 29, 1029 (1974).Google Scholar
6. Kleinman, L., Phillips, J.C., Phys. Rev. 117, 460 (1960).Google Scholar
7. Coulson, C.A., Redei, L.B., Stocker, D., Proc. R. Soc. Lond. A 270, 357 (1962); L.B. Redei, Proc. R. Soc. Lond., A270, 383 (1962); D. Stocker, Proc. R. Soc. Lond., A270, 397 (1962),Google Scholar
8. Bassani, F. and Yoshimine, M., Phys. Rev. 130, 20 (1963).Google Scholar
9. Wiff, D.R. and Keown, R.J., J. Chem. Phys. 47, 3113 (1967).Google Scholar
10. Aleshin, V.G., Smirnov, V.P., and Gantsevich, B.V., Soy. Phys. Solid State 10, 2282 (1969).Google Scholar
11. Hemstreet, L.A. Jr. and Fong, C.Y., Phys. Rev.B6,1464 (1972).Google Scholar
12. Zunger, A. and Freeman, A.J., Phys. Rev.B17, 2030 (1978).Google Scholar
13. Hwang, H.C. and Henkel, J., Phys. Rev.B17, 4100 (1978).Google Scholar
14. Tsay, Y.F., Vaidyanathan, A., and Mitra, S.S., Phys. Rev.B19, 5422 (1979).Google Scholar
15. Dovesi, R., Pisani, C., Roetti, P., and Dellarole, P., Phys. Rev. B 24, 4170 (1981).Google Scholar
16. Huang, M.Z. and Ching, W.Y., J. Phys. Chem. Solids, 46, 977 (1985).Google Scholar
17. Wentzcovitch, R.M., Chang, K.J., and Cohen, M.L., Phys. Rev. B 34, 1071 (1986).Google Scholar
18. Philipp, H.R. and Taft, E.A., Phys. Rev. 127, 159 (1962).Google Scholar
19. Chrenko, R.M., Solid State Commun. 14, 511 (1974).Google Scholar
20. Fomichev, V.A. and Rumsh, M.A., J. Phys. Chem. Solids 29, 1015 (1968).Google Scholar
21. Miyata, N., Moriki, K., Mishima, O., Fujisawa, M., and Hattori, T., Phys. Rev. B40, 15 December (1989).Google Scholar
22. Wentorf, R.H. Jr, J. Chem. Phys. 36, 1987 (1962).Google Scholar
23. Mishima, O., Yamaoka, S., and Fukunaga, O., J. Appl. Phys. 61, 2822 (1987).Google Scholar
24. Mishima, O., Tanaka, J., Yamaoka, S., and Fukunaga, O., Science 238, 181 (1987).Google Scholar
25. Mishima, O., Era, K., Tanaka, J., and Yamaoka, S., Appl. Phys. Lett. 53, 962 (1988).Google Scholar
26. Wentorf, R.H. Jr, J. Phys. Chem. 63, 1934 (1959).Google Scholar
27. Bundy, F.P. and Wentorf, R.H. Jr, J. Chem. Phys. 38, 1144 (1963).Google Scholar
28. DeVries, R.C. and Fleischer, J.F., Mat. Res. Bull. 4, 433 (1969); J. Cryst. Growth 13/14, 88 (1972).Google Scholar
29. Endo, T., Fukunaga, O., and Iwata, M., J. Mater. Sci. 14, 1676 (1979).Google Scholar
30. Endo, T., Fukunaga, O., and Iwata, M., J. Mater. Sci. 16, 2227 (1981).Google Scholar
31. Iizuka, E., Ger. Offen. DE 3,241,979 (1983).Google Scholar
32. Hall, H.T., Rev. Sci. Instr. 31, 125 (1960).Google Scholar
33. Bean, V.E., Akimoto, S., Bell, B.M., Block, S., Holzapfel, W.B., Manghnani, M.H., Nicol, M.F., and Stishov, S.M., Physica139 & 140B, 52 (1986).Google Scholar
34. Wentorf, R.H. Jr, J. Phys. Chem. 75, 1833 (1971); H.M. Strong and R.M. Chrenko, J. Phys. Chem., 75, 1838 (1971).Google Scholar
35. Mishima, O. and Ohsawa, T., presented at the 12th Intl. Conf. on High Pressure Science and Technology, Paderborn, F. R. Germany, 1989.Google Scholar
36. Mishima, O., Yamaoka, S., Fukunaga, O., and Tanaka, J., unpublished; Mishima, O., Yamaoka, S., Fukunaga, O., Tanaka, J. and Era, K., presented at the 1st Intl. Conf. on the New Diamond Science and Technology, Tokyo, Japan, 1988.Google Scholar
37. Aoki, K. and Mishima, O., unpubliched.Google Scholar
38. Era, K. and Mishima, O., this volume.Google Scholar
39. Kobayashi, T., Mishima, O., Iwaki, M., Sakairi, H., and Aono, M., presented at the 9th Intl. Conf. on Ion Beam Analysis (Kingston, Canada, 1989).Google Scholar
40. Kobayashi, T., Mishima, O., Iwaki, M., Sakairi, H., and Aono, M., to be published.Google Scholar
41. Yazu, S., Degawa, J., and Tsuji, K., NEW DIAMOND, No. 15, p. 20 (1989). (in Japanese)Google Scholar
42. Brafman, O., Lengyel, G., and Mitra, S.S., Solid State Commun. 6, 523 (1968).Google Scholar
43. Sanjurjo, J.A., López-Cruz, E., Yogi, P., and Cardona, M., Phys. Rev. B 28, 4579 (1983).Google Scholar
44. Barber, H.D. and Heasell, E.L., J. Chem. Solids 26, 1561 (1965).Google Scholar
45. Tuck, B., J. Mater. Sei. 10, 321 (1975).Google Scholar
46. Stirland, D. J., Thin Solid Films 31, 139 (1976).Google Scholar
47. Chu, S.N.G., Jodlauk, C.M., and Johnston, W.D. Jr, J. Electrochem. Soc. 130, 2398 (1983).Google Scholar
48. Gatos, H.C., J. Electrochem. Soc. 122, 287C (1975).Google Scholar
49. Holt, D.B., J. Mater. Sci. 23, 1131 (1988).Google Scholar
50. Coster, D., Knol, K.S., and Prins, J.A., Z. Phys. 63, 345 (1930).Google Scholar
51. Warekois, E.P. and Metzger, P.H., J. Appl. Phys. 30, 960 (1959).Google Scholar
52. White, J.G. and Roth, W.C., J. Appl. Phys. 30, 946 (1959).Google Scholar
53. Zare, R., Cook, W.R., JNR., and Shiozawa, L.R., Nature 189, 217 (1961).Google Scholar
54. Warekois, E.P., Lavine, M.C., Mariano, A.N., and Gatos, H.C., J. Appl. Phys. 33, 690 (1962).Google Scholar
55. Mariano, A. N. and Hanneman, R.E., J. Appl. Phys. 34, 384 (1963).Google Scholar
56. Heiland, G., Kunstmann, P., and Pfister, H., Z. Phys. 176, 33 (1963).Google Scholar
57. Brafman, O., Alexander, E., Fraenkel, B.S., Kalman, Z.H., and Steinberger, I.T., J. Appl. Phys. 35, 1855 (1964).Google Scholar
58. Mariano, A.N. and Wolff, G.A., Z. Kristallogr. 126, 244 (1968).Google Scholar
59. Barns, R.L., Keve, E.T. and Abrahams, S.C., J. Appl. Cryst. 3, 27 (1970).Google Scholar
60. Burr, K.F. and Woods, J., J. Mater. Sci. 6, 1007 (1971); J. Cryst. Growth 9, 183 (1971).Google Scholar
61. Hosoya, S. and Fukamachi, T., J. Appl. Cryst. 6, 396 (1973).Google Scholar
62. Brongersma, H.H. and Mul, P.M., Chem. Phys. Lett. 19, 217 (1973).Google Scholar
63. Schmidt, W., Pilgermann, B., Kühn, G., and Fischer, P., Kristall und Technik 8, 913 (1973).Google Scholar
64. Fewster, P.F., Cole, S., Willoughby, A.F., and Brown, M., J. Appl. Phys. 52, 4568 (1981); P.F. Fewster and P.A.C. Whiffin, J. Appl. Phys., 54, 4668 (1983).Google Scholar
65. Bontemps, A. and Fontenille, J., Phys. Lett. 55A, 373 (1976).Google Scholar
66. Chami, A.C., Ligeon, E., Danielou, R., and Fontenille, J., Appl. Phys. Lett. 52, 1502 (1988).Google Scholar
67. Kagamida, M., Kanda, H., Akaishi, M., Nukui, A., Ohsawa, T., and Yamaoka, S., J. Cryst. Growth 94, 261 (1989).Google Scholar
68. Faust, J.W. Jr and Sager, A., J. Appl. Phys. 31, 331, (1960).Google Scholar
69. Gatos, H.C. and Lavine, M.C., J. Electrochem. Soc. 107, 433 (1960).Google Scholar
70. Fukunaga, O., Yamaoka, S., Endo, T., Akaishi, M., and Kanda, H., in High-Pressure Science and Technology, 1, edited by Timmerhaus, K.D. and Borber, M.S. (Plenum, New York, 1979). p. 846.Google Scholar