Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-30T21:20:30.915Z Has data issue: false hasContentIssue false

CVD-Graphene Complementary Logic on Ultra-thin Multilayer Hexagonal Boron Nitride

Published online by Cambridge University Press:  30 March 2012

Edwin Kim
Affiliation:
College of Nanoscale Science & Engineering, State University of New York, Albany, NY 12203, U.S.A. Ramtron International Corporation, 1850 Ramtron Drive, Colorado Springs, CO 80921, U.S.A.
Nikhil Jain
Affiliation:
College of Nanoscale Science & Engineering, State University of New York, Albany, NY 12203, U.S.A.
Yang Xu
Affiliation:
Department of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China
Yan Han
Affiliation:
Department of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China
Bin Yu
Affiliation:
College of Nanoscale Science & Engineering, State University of New York, Albany, NY 12203, U.S.A.
Get access

Abstract

Graphene, a two-dimensional carbon allotrope, has raised great interests as a material candidate for future electronics due to its superb carrier transport and unique physics. The demand for future-generation large-scale carbon-based electronics motivates assembly of large-area graphene and selection of ideal substrate material that best preserves the transport property of graphene. In this work, CVD-assembled large-area graphene on thin multilayer hexagonal boron nitride (h-BN) is employed to demonstrate the basic building block of digital circuit - inverter prototype made of two graphene-channel field-effect transistors (GFETs). The doping in the CVD-grown graphene, probed via electrical measurements, is implemented through non-uniform local surface chemistry. The full transfer response of the graphene logic inverter is demonstrated in the localized P/N doping region.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Berger, C., Song, Z., Li, T., Li, X., Ogbazghi, A. Y., Feng, R., Dai, Z., Marchenkov, A. N., Conrad, E. H., First, P. N., and de Heer, W. A., J. Phys. Chem. B 108, 19912 (2004).Google Scholar
2. Obraztsov, A. N., Nature Nanotech. 4, 212 (2009).Google Scholar
3. Dean, C. R., Young, A. F., Meric, I., Lee, C., Wang, L., Sorgenfrei, S., Watanabe, K., Taniguchi, T., Kim, P., Shepard, K. L., and Hone, J., Nature Nanotech. 5, 722 (2010).Google Scholar
4. Gannett, W., Regan, W., Watanabe, K., Taniguchi, T., Crommie, M. F., and Zettl, A., Appl. Phys. Lett. 98, 242105 (2011).Google Scholar
5. Kim, E., Yu, T., Song, E. S., and Yu, B., Appl. Phys. Lett. 98, 262103 (2011).Google Scholar
6. Sordan, R., Traversi, F., and Russo, V., Appl. Phys. Lett. 94, 073305 (2009).Google Scholar
7. Traversi, F., Russo, V., and Sordan, R., Appl. Phys. Lett. 94, 223312 (2009).Google Scholar
8. Shi, Y., Shi, Y., Hamsen, C., Jia, X., Kim, K. K., Reina, A., Hofmann, M., Hsu, A. L., Zhang, K., Li, H., Juang, Z.-Y., Dresselhaus, M. S., Li, L.-J., and Kong, J., Nano Lett. 10, 4134 (2010).Google Scholar
9. Li, X. S., Cai, W., An, J., Kim, S., Nah, J., Yang, D., Piner, R., Velamakanni, A., Jung, I., Tutuc, E., Banerjee, S. K., Colombo, L., and Ruoff, R. S., Science 324, 312 (2009).Google Scholar
10. Geringer, V., Subramaniam, D., Michel, A. K., Szafranek, B., Schall, D., Georgi, A., Mashoff, T., Neumaier, D., Liebmann, M., and Morgenstern, M., Appl. Phys. Lett. 96, 082114 (2010).Google Scholar
11. Chiu, H.-Y., Perebeinos, V., Lin, Y.-M., and Avouris, Ph., Nano Lett. 10, 4634 (2010).Google Scholar
12. Liao, L., Bai, J., Cheng, R., Lin, Y.-C., Jiang, S., Huang, Y., Duan, X., Nano Lett. 10, 1917 (2010).Google Scholar
13. Xia, F., Farmer, D. B., Lin, Y.-M., and Avouris, P., Nano. Lett. 10, 715 (2010).Google Scholar
14. Yu, T., Liang, C.-W., Kim, C., and Yu, B., Appl. Phys. Lett. 98, 243105 (2011).Google Scholar