Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-10T11:45:33.170Z Has data issue: false hasContentIssue false

Defect Penetration During the Plasma Etching of Semiconductors

Published online by Cambridge University Press:  25 February 2011

M. Rahman
Affiliation:
Department of Electronics & Electrical Engineering, Glasgow University Glasgow, G12 8QQ, U. K.
M. A. Foad
Affiliation:
Department of Electronics & Electrical Engineering, Glasgow University Glasgow, G12 8QQ, U. K.
S. Hicks
Affiliation:
Department of Electronics & Electrical Engineering, Glasgow University Glasgow, G12 8QQ, U. K.
M. C. Holland
Affiliation:
Department of Electronics & Electrical Engineering, Glasgow University Glasgow, G12 8QQ, U. K.
C. D. W. Wilkinson
Affiliation:
Department of Electronics & Electrical Engineering, Glasgow University Glasgow, G12 8QQ, U. K.
Get access

Abstract

Dry etching can introduce defects into the material being etched. Simple expressions for both sidewall and top surface defect distributions may be obtained by assuming that the defects are introduced according to a phenomenological source function. Calculations of conductance based on these expressions are found to describe very well measurements on dry-etched wires and epilayers. Mechanisms by which defects can penetrate into the sample are discussed. The role of sample heating and defect diffusion is examined. In-situ measurements of sample temperature during a dry-etch run indicate that simple diffusion is insufficient to account entirely for the observed damage. Instead, dry-etch damage may arise from other mechanisms such as by knock-on replacement collisions, or via a channeling effect. A more complex form of diffusion may also affect the final damage distribution.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Cheung, R., Birnie, A., Chapman, J. N., Thorns, S. and Wilkinson, C. D. W., Microelectron. Eng. 11, 591 (1990).Google Scholar
[2] Sugimoto, Y., Taneya, M., Hidaka, H. and Akita, K., J. Appl Phys. 68, 2392 (1990).Google Scholar
[3] Pang, S. W., Lincoln, G. A., McClelland, R. W., DeGraff, P. D., Geis, M. W. and Piacentini, J., J. Vac. Sci. Technol. B1, 1334 (1983).CrossRefGoogle Scholar
[4] Pang, S. W., J. Electrochem. Soc. 133, 784 (1986).Google Scholar
[5] Lootens, D., Van Daele, P., Demeester, P. and Clauws, P., J. Appl Phys. 70, 221 (1991).Google Scholar
[6] Lishan, D. G., Wong, H. F., Green, D. L., Hu, E. L., Merz, J. L. and Kirillov, D., J. Vac. Sci. Technol. B 7, 556 (1989).Google Scholar
[7] Weber, J., Physica B 170, 201 (1991).Google Scholar
[8] Collot, P. and Gaonach, C., Semicond. Sci. Technol. 5, 237 (1990).Google Scholar
[9] Meyyappan, M., McLane, G. F., Lee, H. S., Eckart, D., Namaroff, M. and Sasserath, J., J. Vac. Sci. Technol. B 10, 1215 (1992).Google Scholar
[10] Hara, T., Hiyoshi, J., Hamanaka, H., Sasaki, M., Kobayashi, F., Ukai, K. and Okada, T., J. Appl Phys. 67, 2836 (1990).Google Scholar
[11] Rahman, M., Johnson, N. P., Foad, M. A., Long, A. R., Holland, M. C. and Wilkinson, C. D. W., Appl Phys. Lett. 61, 2335 (1992).Google Scholar
[12] Foad, M. A., Thoms, S. and Wilkinson, C. D. W., J. Vac. Sci. Technol. B (to appear, Jan/Feb 1993).Google Scholar
[13] Šze, S. M., Semiconductor Devices (John Wiley & Sons, New York, 1985), Ch. 7.Google Scholar
[14] Hussla, I., Enke, K., Grunwald, H., Lorenz, G. and Stoli, H., J. Phys. D 20, 889 (1987).Google Scholar
[15] Visser, R. J., J. Vac. Sci. Technol. A 7, 189 (1989).Google Scholar
[16] Fortuno, G., J. Vac. Sci. Technol. A 4, 744 (1986).Google Scholar
[17] Bourgoin, J. C., van Bardeleben, H. J. and Stiévenard, D., J. Appl Phys. 64, R65 (1988).CrossRefGoogle Scholar
[18] Pons, D. and Bourgoin, J. C., J. Phys. C 18, 3839 (1985).CrossRefGoogle Scholar
[19] Schubert, E. F., J. Vac. Sci. Technol. A 8, 2980 (1990).Google Scholar
[20] Thompson, M. W., in The Interaction of Radiation with Solids edited by Strumane, R., Nihoul, J., Gevers, R. and Amelinckx, S. (North-Holland, Amsterdam, 1964).Google Scholar
[21] Gibson, J. B., Goland, A. N., Milgram, M. and Vineyard, G. H., Phys. Rev. 120, 1229 (1960).Google Scholar
[22] Germann, R., Forchel, A., Bresch, M. and Meier, H. P., J. Vac. Sci. Technol. B 7, 1475 (1989).CrossRefGoogle Scholar
[23] Stoffel, N. G., J. Vac. Sci. Technol. B 10, 651 (1992).Google Scholar