Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-15T07:17:57.705Z Has data issue: false hasContentIssue false

Defects Generated by Hydrogen Absorption/Desorption in Lani5 and Derivatives

Published online by Cambridge University Press:  11 February 2011

B. Décamps
Affiliation:
Laboratoire de Chimie Métallurgique des Terres Rares, UPR 209 - CNRS, 2–8 Rue Henri Dunant, 94320 Thiais cedex, France
J.-M. Joubert
Affiliation:
Laboratoire de Chimie Métallurgique des Terres Rares, UPR 209 - CNRS, 2–8 Rue Henri Dunant, 94320 Thiais cedex, France
R. Cerny
Affiliation:
Laboratoire de Cristallographie, Université de Genève, 24 Quai E. Ansermet, 1211 Genève 4, Switzerland
A. Percheron-Guégan
Affiliation:
Laboratoire de Chimie Métallurgique des Terres Rares, UPR 209 - CNRS, 2–8 Rue Henri Dunant, 94320 Thiais cedex, France
Get access

Abstract

The combination of bright-field and weak-beam transmission electron microscopy (TEM) techniques has been used to analyse the dislocation systems activated in LaNi5 and derivatives after absorption/desorption hydrogen cycling.

The TEM results are discussed and compared with those obtained from the modelling of the anisotropic diffraction peak broadening using only two dislocation slip systems of the hexagonal structure (1).

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Cerny, R., Joubert, J.-M., Latroche, M., Percheron-Guégan, A., and Yvon, K., J. Appl. Cryst. 33, 997 (2000).Google Scholar
2. Percheron-Guégan, A., Lartigue, C., Achard, J.-C., Germi, P., and Tasset, F., J. Less-Common Met. 74, 1 (1980).Google Scholar
3. Lambert, S. W., Chandra, D., Cathey, W. N., Lynch, F. E., and Bowman, R. C. Jr, J. Alloys Compd. 187, 113 (1992).Google Scholar
4. Joubert, J.-M., Cerny, R., Latroche, M., Percheron-Guégan, A., and Yvon, K., J. Alloys Compd., 265, 311 (1998).Google Scholar
5. Wu, E., Kisi, F. H., and Gray, E. Mac. A., J. Appl. Crystallogr., 31, 363 (1998).Google Scholar
6. Krivoglaz, M. A., Theory of X-Ray and Thermal Neutron Scattering by Real Crystals, New-York: Plenum (1969).Google Scholar
7. Klimanek, P., and Kuzel, R. Jr, J. Appl Crystallogr., 21, 59, 363 (1988).Google Scholar
8. Inui, H., Yamamoto, T., Di, Z., and Yamaguchi, M., J. Alloys Compd., 269, 294 (1998).Google Scholar
9. Kim, G.-H., Chun, C.-H., Lee, S.-G., and Lee, J.-Y., Acta Metall. Mater., 42, 9, 3157 (1994).Google Scholar
10. Kim, G.-H., Lee, S.-G., Lee, K.-Y., Chun, C.-H., and Lee, J.-Y., Acta Metall‥Mater‥, 42, 6, 2233 (1995).Google Scholar
11. Hirsch, P.B., Howie, A., Nicholson, R.B., Pashley, D. W., and Whelan, M. J., Electron Microscopy of Thin Crystals, New-York, Krieger (1977).Google Scholar
12. Cockayne, D. J. H., Ray, I. L. F., and Whelan, M. J., Phil. Mag., 20, 1265 (1969).Google Scholar
13. Howie, A., and Whelan, M. J., Proc. R. Soc. A, 267, 206 (1962).Google Scholar
14. Desktop Microscopist, software developed by Lacuna Labs.Google Scholar
15. de Weirman, A.E.M., Staals, A.A., and Notten, P.H.L., Phil. Mag. A, 70, 5, 837 (1994).Google Scholar
16. Yamamoto, T., inui, H., and Yamaguchi, M., Mat. Sci. Eng. A, 329–331, 367 (2002).Google Scholar
17. Inui, H., Yamamoto, T., Hirota, M., and Yamaguchi, M., J. Alloys Compd., 330–332, 117 (2002).Google Scholar
18. Wu, E., Gray, E. MacA., and Cookson, D.J., J. Alloys compd., 330–332, 229 (2002).Google Scholar