Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-15T06:47:42.987Z Has data issue: false hasContentIssue false

Defects in Quasi-One Dimensional Oxide Conductors: K0.3MoO3

Published online by Cambridge University Press:  15 February 2011

Kevin E. Smith
Affiliation:
Department of Physics, Boston University, Boston, MA 02215
Klaus Breuer
Affiliation:
Department of Physics, Boston University, Boston, MA 02215
David Goldberg
Affiliation:
Department of Physics, Boston University, Boston, MA 02215
Martha Greenblatt
Affiliation:
Department of Chemistry, Rutgers University, New Brunswick, NJ 08855
William McCarroll
Affiliation:
Department of Chemistry, Rutgers University, New Brunswick, NJ 08855
Steve L. Hulbert
Affiliation:
National Synchrotron Light Source, Brookhaven National Laboratory, Upton, NY 11973.
Get access

Abstract

The electronic structure of the prototypical quasi-one dimensional (1D) conductor K03MoO3 has been studied using high resolution photoemission spectroscopy. In particular, the electronic structure of defects was investigated in order to understand the mechanism for charge density wave pinning and destruction of the Peierls transition. Defects were found to radically alter the electronic structure close to the Fermi level (EF), thus strongly modifying the structure of the Fermi surface. While a low emission intensity at EF has been interpreted as evidence for a Luttinger liquid ground state in a ID metal, we show that non-stoichiometric surfaces lead to similar effects. The nature of the ground state is discussed in the context of these results.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Smith, I. K.E., Ann. Rep. Prog. Chem. C 90 (in press).Google Scholar
2. Chan, S.K. and Heine, V., J. Phys. F 3, 795 (1973).Google Scholar
3. Rouxel, J., in Crystal Chemistry and Properties of Materials with Quasi-One-Dimensional Structures, edited by Rouxel, J., (D. Reidel Publishing, Dordrecht, 1986), p1.Google Scholar
4. Kohn, W., Phys. Rev. Lett. 2, 393 (1959).Google Scholar
5. Whangbo, M-H. and Canadell, E., J. Am. Chem. Soc. 114, 9587 (1992).Google Scholar
6. Feinberg, D. and Friedel, J., in Ref. 3.Google Scholar
7. Greenblatt, M., Chem. Rev. 88, 31 (1988).Google Scholar
8. Low Dimensional Electronic Properties of Molybdenum Bronzes and Oxides, edited by Schlenker, C. (Kluwer Academic Publishers, Dordrecht, 1989).Google Scholar
9. Ghedira, M., Chenavas, J., Marezio, M. and Marcus, J., J. Solid State Chem. 57, 300 (1985).Google Scholar
10. Whangbo, M.-H. and Schneemeyer, L.F., Inorg. Chem. 25, 2424 (1986).Google Scholar
11. Veuillen, J.Y., Cinti, R.C. and Nemeh, E. Al Khoury, Europhys. Lett. 3, 355 (1987).Google Scholar
12. Mutka, H., Bouffard, S., Dumas, J. and Schlenker, C., J. Physique Lett. 45, L729 (1984)Google Scholar
13. Chen, C.H., Schneemeyer, L.F. and Flemming, R.M., Phys. Rev. B, 29, 3765 (1984)Google Scholar
14. Greenblatt, M., in Ref. 8.Google Scholar
15. Dickens, P.G. and Neild, D.J., Trans. Faraday Soc. 64, 13 (1968).Google Scholar
16. Goodenough, J.B., Prog. Solid State Chem. 5, 145 (1972).Google Scholar
17. a) Smith, K.E. and Kevan, S.D., Prog. Solid State Chem. 21, 49 (1991); b) E.W. Plummer and W. Eberhardt, Adv. Chem Phys. 49, 533 (1982); c) Angle Resolved Photoemission, Ed. Kevan, S.D., Elsevier, Amsterdam, 1991; d) Photoemission in Solids, Parts 1 and 2, Ed. M. Cardona and L. Ley (Springer Verlag, Berlin, 1978).Google Scholar
18. Kevan, S.D., Rev. Sci. Instrum. 54, 1441 (1983).Google Scholar
19. Fleisch, T.H. and Mains, G.J., J. Chem. Phys. 76, 780 (1982).Google Scholar
20. Dardel, B., Malterre, D., Grioni, M., Weibel, P., Baer, Y., and Lévy, F., Phys. Rev. Lett. 67, 3144 (1992)Google Scholar
21. Dardel, B., Malterre, D., Grioni, M., Weibel, P., Baer, Y., Schlenker, C. and Petroff, Y., Europhys. Lett. 19, 525 (1992).Google Scholar
22. Terashima, K., Matsuoka, H., Soda, K., Suga, S., Yamamoto, R., and Doyama, M., J. Phys. Soc. Japan 57, 2557 (1988).Google Scholar
23. Ohtake, K., Matsuoka, H., Yamamoto, R., Doyama, M., Sakamoto, H., Mori, T., Soda, K., and Suga, S., J. Phys. C 19, 7207 (1986).Google Scholar
24. Wertheim, G.K., Schneemeyer, L.F. and Buchanan, D.N.E., Phys. Rev. B. 32, 3568 (1985).Google Scholar
25. Breuer, K., Smith, K.E., Greenblatt, M. and McCarroll, W., J. Vac. Sci. Technol. A 12, 2196 (1994)Google Scholar
26. Breuer, K., Smith, K.E., Greenblatt, M., McCarroll, W., and Hulbert, S.L., Solid State Communications (submitted).Google Scholar
27. Smith, K.E., Breuer, K., Greenblatt, M. and McCarroll, W., Phys. Rev. Lett. 70, 3772 (1993).Google Scholar
28. Knotek, M.L. and Feibelman, P.J., Phys. Rev. Lett. 40, 964 (1978).Google Scholar
29. Benbow, R.L., Thuler, M.R. and Hurych, Z., Phys. Rev. Lett. 49, 1264 (1982).Google Scholar
30. Wertheim, G.K., Schneemeyer, L.F., and Buchanan, D.N.E., Phys. Rev. B 32, 3568 (1985).Google Scholar
31. Doniach, S. and Sunjic, M., J. Phys. C 3, 385 (1970).Google Scholar
32. Werfel, F. and Minni, E., J. Phys. C: Solid State Phys. 16, 6091 (1983).Google Scholar
33. Hwu, Y., Alméras, P., Marsi, M., Berger, H., Lévy, F., Grioni, M., Malterre, D., and Margaritondo, G., Phys. Rev. B 46, 13624 (1992)Google Scholar
34. Coluzza, C., Berger, H., Alméras, P., Gozzo, F., Margaritondo, G., Indlekofer, G., Forro, L., and Hwu, Y., Phys. Rev. B 47, 6625 (1993)Google Scholar
35. Schmeisser, D., Jaegermann, W., Pettenkofer, Ch., Wachtel, H., Jimenez-Gonzales, A., von Schütz, J.U., Wolf, H.C., Erk, P., Meixner, H., and Hünig, S., Solid State Comm un. 81, 827 (1992); B. Dardel, D. Malterre, M. Grioni, P. Weibel, Y. Baer, J. Voit and D. Jerome, Europhys. Lett. 24, 687 (1993).Google Scholar
36. Breuer, K., Smith, K.E., Greenblatt, M. and McCarroll, W., (unpublished).Google Scholar
37. Luttinger, J.M., I. Math. Phys. 4, 1154 (1963); S. Tomonaga, Prog. Theor. Phys. 5, 349 (1950); 1. Solyom, Adv. in Phys. 28, 201 (1979); H.J. Schulz, Int. J. Mod. Phys. 5, 57 (1991).Google Scholar
38. Fujimori, A., Kawakami, K., and Tsuda, N., Phys. Rev. B 38, 7889 (1988).Google Scholar
39. Edwards, P.P., Egdell, R.G., Fragala, I., Goodenough, J.B., Harrison, M.R., Orchard, A.F., Scott, E.G., J. Solid State Chem. 54, 127 (1984).Google Scholar
40. Chainani, A., Mathew, M., and Sarma, D.D., Phys. Rev. B 47, 15397 (1993).Google Scholar