Published online by Cambridge University Press: 30 January 2014
Study on oxidizing cellulose scaffold to dialdehyde cellulose by sodium periodate (NaIO4) was carried out. Concentration of sodium periodate and the reaction time were effected for aldehyde introduction to cellulose scaffolds. Cellulose powder was dissolved in 1-butyl-3-methylimidazolium chloride, an ionic liquid, at 100°C and maintained at room temperature for 7 days, providing flexible cellulose scaffold. The cellulose scaffold was oxidized using periodate oxidation (Malaprade oxidation), which oxidizes carbohydrate by glycol cleavage to provide dialdehyde. Aldehyde groups introduced into cellulose were quantified by simple iodometry. Oxidized cellulose scaffold was degraded in the amino acid solution triggered by the reaction between aldehyde groups and amino groups. During immersion of the cellulose scaffolds in the amino acid solution, the mass loss of the scaffolds was evaluated by measuring of weight of oxidized cellulose scaffold before and after degradation.