No CrossRef data available.
Published online by Cambridge University Press: 17 June 2011
Hydrogels with their tunable properties are attractive candidates for developing tissue engineering scaffolds for various applications (including bone and cartilage). The current work involved studying the synergistic effect of basic fibroblast growth factor (bFGF) and platelet derived growth factor BB (PDGF-BB) entrapped within injectable porous gels for bone regeneration applications. An in situ gelling system was developed using bacterial polysaccharides gellan and xanthan gum by temperature and ionic gelation with Ca+2. After the initial characterization of the hydrogels, a dual growth factor release system was developed wherein growth factors were encapsulated within chitosan nanoparticles embedded in the gels as well as directly within the gel. The hydrogel structure was characterized by SEM and TEM and in vitro growth factor release studies showed a slow release profile in PBS. Further, human fetal osteoblasts were entrapped within the hydrogel and a 21 day osteoblast differentiation study was conducted. An improvement in osteoblast total protein synthesis and collagen content was observed by day 21 compared to control gels without growth factors. Although further evaluation regarding mechanical properties and expression of osteogenic differentiation marker genes will be necessary, the present study suggests that injectable scaffolds can be used for the delivery of multiple growth promoting agents to support osteoblast differentiation.