Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2025-01-01T03:19:15.713Z Has data issue: false hasContentIssue false

Development of a MEMS Xylophone Bar Magnetometer Using Optical Interferometry for Detection

Published online by Cambridge University Press:  10 February 2011

Joseph Miragliotta
Affiliation:
The Johns Hopkins University Applied Physics Laboratory Laurel, MD 20723-6099, USA
R. Osiander
Affiliation:
The Johns Hopkins University Applied Physics Laboratory Laurel, MD 20723-6099, USA
J. L. Champion
Affiliation:
The Johns Hopkins University Applied Physics Laboratory Laurel, MD 20723-6099, USA
D. A. Oursler
Affiliation:
The Johns Hopkins University Applied Physics Laboratory Laurel, MD 20723-6099, USA
T.J. Kistenmacher
Affiliation:
The Johns Hopkins University Applied Physics Laboratory Laurel, MD 20723-6099, USA
Get access

Abstract

We report the results of an optical interferometric study, which was designed to measure the magnetic-field induced displacement of a resonating xylophone bar MEMS magnetometer. The MEMS magnetometer is a Lorentz-force sensor, which transduces an alternating current and an orthogonal directed magnetic field into an alternating displacement of the xylophone bar. The Michelson interferometer system includes optics and electronics for active stabilization of the optical path length difference between the reference and sample beams. The active stabilization results in the ability to control or detect pathlength differences as small as ∼ 0.6 ×10−3 Å. With this level of operational sensitivity, the presence of a one nano Tesla magnetic field was found to produce a detectable bar displacement on the order of ∼10−3 Å. In addition to the high sensitivity, the interferometer photodetector displayed linear behavior over six decades of optical path length differences, which corresponded to a magnetic field dynamic range that spanned nano- to milli-Tesla amplitudes.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]. Lohr, D. A., Zanetti, L. J., Anderson, B. J., Potemra, T. A., and Acuna, M. H., Johns Hopkins APL Tech. Dig. 19, 136 (1998).Google Scholar
[2]. Acuna, M. H., IEEE Trans. Magnetics, MAG 10, 519 (1974).10.1109/TMAG.1974.1058457Google Scholar
[3]. Givens, R. B., Murphy, J. C., Osiander, R., Kistenmacher, T. J., and Wickenden, D. K., Appl. Phys. Lett. 69, 2755 (1996).Google Scholar
[4]. Oursler, D. A., Wickenden, D. K., Zanetti, L. J., Kistenmacher, T.J., Givens, R. B., Osiander, R., Champion, J. L., and Lohr, D. A., Johns Hopkins APL Tech. Dig. 20, 181 (1999).Google Scholar
[5]. Oursler, D. A., Wickenden, D. K., Givens, R. B., Osiander, R., Champion, J. L., and Kistenmacher, T.J., Appl. Phys. Lett. 74, 1472 (1999).Google Scholar
[6] Garcia-Valenzuela, A. and Tabib-Azar, M., Proceedings of the SPIE Vol. 2291, 125 (1994).Google Scholar
[7] Wagner, J. W. and Spicer, J. B., J. Opt. Sox. Am. B 4, 1316 (1987).Google Scholar
[8] Young, W. C., Roark's Formulas for Stress and Strain, 6th Ed. McGraw-Hill, New York (1989).Google Scholar