Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2025-01-02T19:03:09.298Z Has data issue: false hasContentIssue false

Development of Electrostatic Actuated Nano Tensile Testing Device for Mechanical and Electrical Characteristics of FIB Deposited Carbon Nanowire

Published online by Cambridge University Press:  01 February 2011

Mario Kiuchi
Affiliation:
rm003989@se.ritsumei.ac.jp, Ritsumeikan University, Graduate School of Science and Engineering, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan
Shinji Matsui
Affiliation:
matsui@lasti.u-hyogo.ac.jp, University of Hyogo, Laboratory of Advanced Science and Technology for Industry, 3-1-2 Koto, Kamigori, Ako, Hyogo, 678-1201, Japan
Yoshitada Isono
Affiliation:
isono@se.ritsumei.ac.jp, Ritsumeikan University, Department of Micro System Technology, Faculty of Science and Engineering, 1-1-1 Nojihigashi, Kusatsu, Shiga, 5258577, Japan
Get access

Abstract

This research develops Electrostatic Actuated NAno Tensile testing devices (EANATs) to evaluate mechanical and electrical properties of carbon nanowires fabricated by focus ion beam- assisted chemical vapor deposition (FIB-CVD). This research carried out nanoscale uniaxial tensile tests for 90 nm- to 150 nm-diametric carbon nanowires using EANATs. Young's modulus of cabon nanowires averaged 58 GPa, which was close to that of hydrogenated diamond-like carbon films. On average, fracture stress and strain of carbon nanowires reached values of 4.2 GPa and 0.08, respectively. This research also measured I-V characteristics of 100 nm-diametric carbon nanowires under tensile loading to reveal the piezo resistivity of nanowires. The piezoresistive effect of carbon nanowire was observed. The tensile load was about 0.75 GPa at maximum value of the resistance change.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Iijima, S., Nature, vol. 354, pp. 5658, Nov. 1991.Google Scholar
2. Kroto, H. W., Heath, J. R., O'Brien, S. C., Curl, R. F., and Smalley, R. E., Nature, vol. 318, pp. 162163, Nov. 1985.Google Scholar
3. Robertson, J., Surface and Coatings Technology, vol. 50, pp. 185203, 1992.Google Scholar
4. Matsui, S., Kaito, T., Fujita, J., Komuro, M., Kanda, K., and Haruyama, Y., J. Vac. Sci. Technol. B, vol. 18, no. 6, pp. 31813184, Nov./Dec. 2000.Google Scholar
5. Morita, T., Kometani, R., Watanabe, K., Kanda, K., Haruyama, Y., Hoshino, T., Kondo, K., Kaito, T., Ichihashi, T., Fujita, J., Ishida, M., Ochiai, Y., Tajima, T., and Matsui, S., J. Vac. Sci. Technol. B, vol. 21, no. 6, pp. 27372741, Nov./Dec. 2003.Google Scholar
6. Morita, T., Nakamatsu, K., Kanda, K., Haruyama, Y., Kondo, K., Hoshino, T., Kaito, T., Fujita, J., Ichihashi, T., Ishida, M., Ochiai, Y., Tajima, T., and Matsui, S., J. Vac. Sci. Technol. B, vol. 22, no. 6, pp. 31373142, Nov./Dec. 2004.Google Scholar
7. Robertson, J., Physical Review Letters, vol. 68, no. 2, pp. 220223, Jan. 1992.Google Scholar