Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-15T04:02:36.576Z Has data issue: false hasContentIssue false

Development of New Fullerene-based Electron Acceptors for Efficient Organic Photovoltaic Cells

Published online by Cambridge University Press:  30 March 2012

Yutaka Matsuo*
Affiliation:
Department of Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, JAPAN
Get access

Abstract

This article describes design of fullerene-based electron-accepting materials to obtain high performance in organic thin-film photovoltaic devices. A 1,4-bis(dimethylphenylsilylmethyl)[60]fullerene gives higher open circuit voltage than 1,2-diadduct because of smaller π-conjugated systems, and enables columnar fullerene-core array for high electron mobility and thermal crystallization for ideal phase separation with electron-donor materials. A 56π-electron fullerene derivative possessing the dihydromethano group as the smallest carbon addend does not disrupt fullerene-fullerene contact in solid state, giving high open-circuit voltage without decreasing of short-circuit current density and fill factor.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Matsuo, Y., Iwashita, A., Abe, Y., Li, C.-Z., Matsuo, K., Hashiguchi, M., and Nakamura, E., J. Am. Chem. Soc. 130, 15429 (2008).Google Scholar
2. Matsuo, Y., Sato, Y., Niinomi, T., Soga, I., Tanaka, H., and Nakamura, E., J. Am. Chem. Soc. 131, 16048 (2009).Google Scholar
3. Zhang, Y., Matsuo, Y., Li, C.-Z., Tanaka, H., and Nakamura, E., J. Am. Chem. Soc. 133, 8086 (2011).Google Scholar
4. Smith, A. B. III, Strongin, R. M., Brard, L., Furst, G. T., and Romanow, W. J., J. Am. Chem. Soc. 115, 5829 (1993).Google Scholar
5. Ito, S., , Murashima, T, Uno, H., and Ono, N., Chem. Commun., 1661 (1998)Google Scholar
6. Aramaki, S., Sakai, Y., and Ono, N., Appl. Phys. Lett. 84, 2085 (2004)Google Scholar
7. Matsuo, Y., Zhang, Y., Soga, I., Sato, Y., and Nakamura, E., Tetrahedron Lett. 52, 2240 (2011).Google Scholar
8. Lenes, M., Wetzelaer, G.-J. A. H., Kooistra, F. B., Veenstra, S. C., Hummelen, J. C., and Blom, P. W. M., Adv. Mater. 20, 2116 (2008).Google Scholar
9. WO/2008/018931; US Patent Application 20090176994.Google Scholar
10. He, Y., Chen, H.-Y., Hou, J., and Li, Y., J. Am. Chem. Soc. 132, 1377 (2010).Google Scholar
11. He, Y., Zhao, G., Peng, B., and Li, Y., Adv. Funct. Mater. 20, 3383 (2010).Google Scholar
12. Zhao, G., He, Y., and Li, Y., Adv. Mater. 22, 4355 (2010).Google Scholar
13. Cheng, Y.-J., Hsieh, C.-H., He, Y., Hsu, C.-S., and Li, Y., J. Am. Chem. Soc. 132, 17381 (2010).Google Scholar
14. Li, C.-Z., Chien, S.-C., Yip, H.-L., Chueh, C.-C., Chen, F.-C., Matsuo, Y., Nakamura, E., Jen, A. K.-Y., Chem. Commun. 47, 10082 (2011).Google Scholar