Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2025-01-04T00:42:40.423Z Has data issue: false hasContentIssue false

Dielectric Constant of Barium Titanate Synthesized by Containerless Processing

Published online by Cambridge University Press:  01 February 2011

Jianding Yu
Affiliation:
Japan Aerospace Exploration Agency, ISS Science Project Office, 2–1–1 Sengen, Tsukuba, Ibaraki 305–8505, Japan
Paul-François Paradis
Affiliation:
Japan Aerospace Exploration Agency, ISS Science Project Office, 2–1–1 Sengen, Tsukuba, Ibaraki 305–8505, Japan
Takehiko Ishikawa
Affiliation:
Japan Aerospace Exploration Agency, ISS Science Project Office, 2–1–1 Sengen, Tsukuba, Ibaraki 305–8505, Japan
Shinichi Yoda
Affiliation:
Japan Aerospace Exploration Agency, ISS Science Project Office, 2–1–1 Sengen, Tsukuba, Ibaraki 305–8505, Japan
Get access

Abstract

Containerless processing is an attractive synthesis technique that permits deep undercooling and provides the possibility to solidify the undercooled liquid into a selected phase, and to synthesize materials with novel properties. Spheroidal BaTiO3 samples with a diameter of approximately 2mm were solidified by containerless processing, using an electrostatic levitation apparatus. Single crystal hexagonal BaTiO3 and polycrystalline perovskite BaTiO3 were successfully synthesized at different undercoolings levels. An oxygen-deficient single crystal of hexagonal BaTiO3 obtained with this method, exhibited a giant permittivity higher than 100000, with a loss component tanδ of about 0.1 at room temperature. The permittivity showed weak temperature dependence in the 70 K to 300 K range, and a dramatic drop by 2 orders of magnitude below 70 K. In comparison, the polycrystalline perovskite BaTiO3 showed a permittivity of 4000 at room temperature.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Merz, W. J., Phys. Rev. 76, 1221 (1949)Google Scholar
2. Evans, H. T. Jr, and Burbank, R. D., J. Chem. Phys. 16 634 (1948)Google Scholar
3. Sawaguchi, E., Akishige, Y., and Kobayashi, M., J. Phys. Soc. Jpn. 54, 480 (1985).Google Scholar
4. Sawaguchi, E., Akishige, Y., and Kobayashi, M., J. Appl. Phys. Suppl. 24(2), 252 (1985).Google Scholar
5. Sinclair, D. C., Skakle, J. M. S., Morrison, F. D., Smith, R. B., Beales, T. P.. J. Mater. Chem. 9, 1327 (1999).Google Scholar
6. Sung, Y. S., Takeya, H., Hirata, K. and Togano, K., Appl. Phys. Lett. 82, 3638 (2003).Google Scholar
7. Paradis, P.-F., Yu, J., Ishikawa, T., Aoyama, T., and Yoda, S.. Appl. Phys. A. 76, 1 (2003).Google Scholar
8. Paradis, P.-F., Ishikawa, T., Yu, J., and Yoda, S.. Rev. Sci. Instrum. 72, 2811 (2001).Google Scholar
9. Kirby, K.W., and Wechsler, B.A.. J. Am. Ceram. Soc. 74, 1841 (1991).Google Scholar
10. Okazaki, K.: Ceramics engineering for dielectrics, fourth-ed. (Gakken-Sha Co., Ltd, Tokyo, 1992).Google Scholar
11. Subramanian, M. A.,, Li, D., Duan, N.,, Reisnert, B. A., and Sleightt, A. W., J. Solid State Chem. 151, 323 (2000).Google Scholar
12. Ramirez, A.P., Subramanian, M.A., Gardel, M., Blumberg, G., Li, D., Vogt, T., and Shapiro, S.M., Solid State Commun. 15, 17 (2000).Google Scholar
13. Homes, C. C., Vogt, T., Shapiro, S. M., Wakimoto, S., and Ramirez, A. P., Science 293, 673 (2001).Google Scholar
14. Yu, J., Paradis, P.-F., Ishikawa, T., and Yoda, S., Appl. Phys. Lett. 85, 2899 (2004).Google Scholar
15. Yu, J., Paradis, P.-F., Ishikawa, T., Yoda, S., Saita, Y., and Itoh, M., Chem. Mater. 16, 3973 (2004)Google Scholar