Published online by Cambridge University Press: 28 February 2011
Properties of a system at equilibrium depend on pressure, temperature and composition. Thus for a melt produced by the sol-gel (SG) process to be different from an identical composition melted from batch (MB), both cannot be at equilibrium. Non equilibrium melts can be associated with structural differences or homogeneity differences. The former have been suggested for SG melts while the latter is always possible in MB melts. Appropriate relaxation times are presented for structural and heterogeneity relaxation. From this it is concluded that structural differences will not persist unless the SG melt is metastable with respect to the equilibrium melt. A method for testing this unlikely premise is proposed.
Melts which are imperceptibly different from equilibrium may have non-equilibrium crystal embryo distributions that relax toward equilibrium with a time constant longer than that for structural relaxation. A difference in embryo and stable nuclei distribution will result in different crystallization kinetics.