Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-13T01:18:22.301Z Has data issue: false hasContentIssue false

Direct Observation of Bulk and Interface States in GaN on Sapphire grown by Hydride Vapor Phase Epitaxy

Published online by Cambridge University Press:  17 March 2011

S. H. Goss
Affiliation:
Center for Materials Research, Ohio State University, Columbus OH
A. P. Young
Affiliation:
Department of Electrical Engineering, Ohio State University, Columbus OH Phone (614)-292-8015, Fax (614)-688-4688
L. J. Brillson
Affiliation:
Center for Materials Research, Ohio State University, Columbus OH Department of Electrical Engineering, Ohio State University, Columbus OH Phone (614)-292-8015, Fax (614)-688-4688
D. C. Look
Affiliation:
Wright State University, Dayton OH
R. J. Molnar
Affiliation:
Massachusetts Institute of Technology Lincoln Labs, Lexington MA
Get access

Abstract

We have used an ultrahigh vacuum scanning electron microscope to carry out cross sectional secondary electron imaging, cathodoluminescence spectroscopy, and cathodoluminescence imaging on GaN grown on sapphire by hydride vapor phase epitaxy. These measurements provide evidence for deep level defects highly localized at the GaN, sapphire interface as well as defects extending into both the semiconductor film and the substrate. The different spatial distributions of these radiative defects provide information on the physical origin of these electrically active features.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Look, D. C., and Molnar, R. J., Appl. Phys. Lett., 70 (25), 3377 (1997).Google Scholar
2. Xu, X. L, Beling, C. D., Fung, S., Zhao, Y. W., Sun, N. F., Sun, T. N., Zhang, Q. L, Zhan, H. H., Sun, B. Q., Wang, J. N., Ge, W. K., and Wong, P. C., Appl. Phys. Lett., 76 (2), 152. (2000)Google Scholar
3. Romano, L. T., Krusor, B. S, and Molnar, R. J., Appl. Phys. Lett., 71 (16), 2283. (1997)Google Scholar
4. Levin, T. M., Jessen, G. H., Ponce, F. A., and Brillson, L. J., J. Vac. Sci., B17 (6), 2545. (1999)Google Scholar
5. Neugebauer, J. and Walle, C. G. Van de, Appl. Phys. Lett. 69 (4), 1503. (1996)Google Scholar
6. Youngman, R. A. and Harris, J. H., J. of the Amer. Ceram. Soc. 73 (11), 32383246. (1990)Google Scholar
7. Pankove, J. I. and Hutchby, J. A., J. Appl. Phys. 47, 5387 (1976)Google Scholar
8. Gu, S., Zhang, R., Sun, J., Zheng, L., and Kuech, T. F., Appl. Phys. Lett. 76(23), 3454. (2000)Google Scholar
9. Ponce, F. A., Bour, D. P., Gotz, W., Wright, P. J., Appl. Phys. Lett. 68 (1), 57. (1996)Google Scholar