Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-15T07:15:49.107Z Has data issue: false hasContentIssue false

Dissociation Processes in the Orthorhombic O Phase

Published online by Cambridge University Press:  01 January 1992

Joel Douin
Affiliation:
LEM, CNRS/ONERA, 29, avenue de la division Leclerc, BP 72, 92332 Chatillon Cedex, France
Shigehisa Naka
Affiliation:
OM, ONERA, 29, avenue de la division Leclerc, BP 72, 92332 Chatillon Cedex, France
Marc Thomas
Affiliation:
OM, ONERA, 29, avenue de la division Leclerc, BP 72, 92332 Chatillon Cedex, France
Get access

Abstract

In the orthorhombic phase of Ti2AlNb-type, the occurrence of different dissociation modes of dislocations, glissile in the (001) basal plane is reported. [100] and 1/2[110] dislocations usually dissociate in order to form antiphase boundaries. Detailed weak-beam observations show that [100] dislocations, as well as [010] dislocations formed by interaction of 1/2<110> dislocations, can dissociate into three-fold configurations containing a pair of stacking faults.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Rowe, R.G., in 2nd ASM Paris Conf. on Synthesis. Processing and Modelling of Advanced Materials edited by Froes, F.H. and Khan, T. (Trans Tech Publications, 1993), 77, p.61.Google Scholar
2. Banerjee, D., Gogia, A.K., Nandi, T.K. and Joshi, V.A., Acta Met., 36, 871 (1988).Google Scholar
3. Kaufman, M.J., Broderick, T.F., Ward, C.H., Kim, J.K., Rowe, R.G. and Froes, F.H., in Proc. 6th World Conference on Titanium edited by Lacombe, P., Tricot, R. and Béranger, G. (Société Française de Métallurgie, 1988), p. 985.Google Scholar
4. Banerjee, D., Nandy, T.K., Gogia, A.K. and Muraleedharan, K., Proc. 6th Int. Conf. on Titanium, eds Lacombe, P., Tricot, R. and Béranger, G. (Société Française de Métallurgie, 1988), p. 1091.Google Scholar
5. Rowe, R.G., Hall, E.L., Scarr, G.K., Koch, E.F. and Garbauskas, M.F., ASM/TMS-AIME Symposium presentation, Indianapolis (1989).Google Scholar
6. Bendersky, L.A., Boettinger, W.J. and Roytburd, A., Acta Met., 39, 1959 (1991).Google Scholar
7. Banerjee, D., Rowe, R.G. and Hall, E.L. in High-Temperature Ordered Intermetallic Alloys IV edited by Johnson, L.A., Pope, D.P. and Stiegler, J.O. (Mater. Res. Soc. Proc. 213, Pittsburgh, PA, 1991) pp. 285290.Google Scholar
8. Peters, J.A. and Bassi, C., Scripta Met., 24, 915 (1990).Google Scholar
9. Hsiung, L.M. and Wadley, H.N.G., Scripta Met., 27, 605 (1992).Google Scholar
10. Thomas, M., Naka, S., Marty, M., Smarshy, W.G. and Khan, T., Proc. 7th World Conference on Titanium. San Diego (1992).Google Scholar
11. Koss, D.A., Banerjee, D., Lukasak, D.A. and Gogia, A.K. in High Temperature Aluminides & Intermetallics edited by Whang, S.H., Liu, C.T., Pope, D.P. and Stiegler, J.O. (TMS Publication, 1990), p. 175.Google Scholar
12. Rowe, R.G., Konitzer, D.G., Woodfield, A.P. and Chesnutt, J.C. in High-Temperature Ordered Intermetallic Alloys IV edited by Johnson, L.A., Pope, D.P. and Stiegler, J.O. (Mater. Res. Soc. Proc. 213, Pittsburgh, PA, 1991) pp. 703708.Google Scholar
13. Bonneville, J. and Douin, J., Journal de Physique I, in the press (1992).Google Scholar
14. Douin, J., to be published.Google Scholar