Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-15T07:03:02.604Z Has data issue: false hasContentIssue false

Effect of Microstructure on the Properties of MoSi2 and its Composites

Published online by Cambridge University Press:  15 February 2011

A. Newman
Affiliation:
Department of Materials Science and Engineering, State University of New York, Stony Brook, NY 11794
T. Jewett
Affiliation:
Department of Materials Science and Engineering, State University of New York, Stony Brook, NY 11794
S. Sampath
Affiliation:
Department of Materials Science and Engineering, State University of New York, Stony Brook, NY 11794
H. Herman
Affiliation:
Department of Materials Science and Engineering, State University of New York, Stony Brook, NY 11794
Get access

Abstract

The effects of processing on the microstructure and properties of MoSi2 are examined. A diverse array of samples, processed through a variety of means, were investigated for their microstructural features and indentation fracture behavior. Results from this study indicate that a finely dispersed secondary phase enhances tortuous crack paths, crack branching, and microcracking, thereby improving fracture toughness. The effects of substitutional alloying (Re, Al) and composite additions (SiC) have also been investigated.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Vasudevan, A. K. and Petrovic, J. J., Mat. Sci. and Eng., A155, 118 (1992).Google Scholar
2. Hardwick, D. A., Martin, P. L., and Moores, R. J., Scripta Metall. Mater. 27, 391 (1992).Google Scholar
3. Aikin, R. M. Jr, Scripta Metall. Mater., 26, 10251030 (1992).Google Scholar
4. Ito, K., Inui, H., Shirai, Y., and Yamaguchi, M., Phil. Mag. A., 72(4), 10751097 (1995).Google Scholar
5. Baker, I. and Munroe, P. R, J. of Met., 40(2), 2831 (1988).Google Scholar
6. Darolia, R, Lahrman, D., and Field, R, Scripta Metall. Mater., 26, 10071012 (1992).Google Scholar
7. Yamaguchi, M. and Umakoshi, Y., Prog. Met. Sci., 34, 22, 118 (1990).Google Scholar
8. Petrovic, J. J. and Honnell, R. E., J. of Mat. Sci., 25, 44534456 (1990).Google Scholar
9. Tiwari, R, Herman, H., and Sampath, S., Mat. Sci. and Eng., A155, 95100 (1992).Google Scholar
10. Bhattacharya, A. K. and Petrovic, J. J., J. Am. Ceram. See., 74(10), 27002703 (1991).Google Scholar
11. Bhaduri, S. B. and Radhakrislinan, R., Advances in Powder Metallurgy & Paniculate Materials., Vol. 9. Paniculate Materials and Processes, San Francisco, California, USA, 21–26 June 1992, p. 369379.Google Scholar
12. Castro, R. G., Smith, R. W., Rollert, A. D., and Stanek, P. W., Scripta Metall. Mater., 26, 207212 (1992).Google Scholar
13. Wade, R. K. and Petrovic, J. J., J. Am. Ceram. Soc., 75(11), 3160–62 (1992).Google Scholar
14. Newman, A., Sampath, S., and Herman, H., TMS Proceedings, Processing and Design Issues in High Temperature Materials, May 1996, Davos, Switzerland, in press.Google Scholar
15. Chin, S., Anton, D. L., and Giamei, A. F., Microstructure And Mechanical Properties Of Nitrided Molybdenum Suicide Coatings in High Temperature Suicides and Refractory Alloys, eds. Briant, C. L., Petrovic, J. J., Bewlay, B. P., Vasudevan, A. K., Lipsitt, H. A., 322, 423429 (1994).Google Scholar
16. Davidson, D. L. and Bose, A., Microstructure And Mechanical Properties Of Nitrided Molybdenum Suicide Coatings in High Temperature Suicides and Refractory Alloys, eds. Briant, C. L., Petrovic, J. J., Bewlay, B. P., Vasudevan, A. K., Lipsitt, H. A., 322, 431436 (1994).Google Scholar
17. Jayashankar, S., Riddle, S. E., and Kaufman, M. J., Microstructure And Mechanical Properties Of Nitrided Molybdenum Suicide Coatings in High Temperature Suicides and Refractory Alloys, eds. Briant, C. L, Petrovic, J. J., Bewlay, B. P., Vasudevan, A. K., Lipsitt, H. A., 322, 3340 (1994).Google Scholar
18. Stergiou, A. and Tsakiropoulos, P., Mat. Res. Soc. Symp. Proc, High Temperature Ordered Alloys VI, Eds. Horton, J. A., Baker, I., Hanada, S., Noebe, R. D., Schwartz, D. S., Vol. 364, 911916 (1995).Google Scholar
19. Evans, A. G. and Charles, E. A., J. Am. Ceram. Soc., 59(7–8), 371372 (1976).Google Scholar
20. Anstis, G. R., Chamikul, P., Lawn, B. R., and Marshall, D. B., J. Amer. Ceram. Soc., 64(9), 533538 (1981).Google Scholar
21. Faber, K. T. and Evans, A. G., Acta Met., 31(4), 577584 (1983).Google Scholar
22. Evans, A. G., Acta Met., 26, 18451853 (1978).Google Scholar