Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2025-01-01T03:17:10.022Z Has data issue: false hasContentIssue false

Effect of Stoichiometry on the Ferroelectric Properties of (Pb1−xLax)TiO3 Thin Films

Published online by Cambridge University Press:  10 February 2011

I-Nan Lin
Affiliation:
Department of Material Science and Engineering, Material Science Center, National Tsing-Hua University, Hsinchu, Taiwan300, R.O.C
Cheng-Hsiung Lin
Affiliation:
Department of Material Science and Engineering, Material Science Center, National Tsing-Hua University, Hsinchu, Taiwan300, R.O.C
Yen-Hua Hsu
Affiliation:
Department of Material Science and Engineering, Material Science Center, National Tsing-Hua University, Hsinchu, Taiwan300, R.O.C
Han-Fang Teng
Affiliation:
Department of Material Science and Engineering, Material Science Center, National Tsing-Hua University, Hsinchu, Taiwan300, R.O.C
Hsiu-Fung Cheng
Affiliation:
Department of Physics, National Taiwan Normal University, Taipei, Taiwan117, R.O.C
Get access

Abstract

The (Pb1−xLax)TiO3, (PLT) thin films possessing good ferroelectric properties were successfully obtained by using metal-organic-decomposition (MOD) process, followed by furnace post-annealing at 600-700°C (60 min) or rapid thermal annealing (RTA) at 600-700°C (60 s). Excess Pb-species incorporated in precursors for compensating for the Pb-loss during MOD process results in pronounced modification on thin film's electrical properties. The leakage current is reduced from JL= 1 × 10−3 A/cm2 to 1 × 10−4 A/cm2 (at 400 kV/cm) and the remanent polarization is increased from Pr= 8.3 µ C/cm2 to 12.6 µC/cm2, when 10 mol% excess-Pb is added. On the other hand, larger La-content in PLT films results in more pronounced Pb-loss and induces larger leakage current, which significantly degrades the ferroelectric properties of the films. The best properties obtained for PLT films prepared by the MOD process are: Pr= 12.6 µC/cm2, Ec = 80 kV/cm and JL= 10−5 A/cm2 (at 400 kV/cm).

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1) Scott, J. F. and Araujo, C. A. P.de, Science 246, 1400 (1963.5).Google Scholar
2) Araujo, C. A. P.de, McMillan, L. D., Melnick, B. M., Cuchiaro, J. D. and Scott, J. F., Ferroelectric 104, 241 (1990).Google Scholar
3) Moazzami, R., Hu, C. and Shepherd, W. H., IEEE Trans. Elec. Devices 9, 2044 (1992).Google Scholar
4) Haertling, G. H., J. Vac. Sci. Technol. A, 9, 414 (1991).Google Scholar
5) Ramesh, R., Chan, W. K., Wilkens, B., Gilchrist, H., Sands, T., Tarascon, J. M., Keramidas, V. G., Fork, D. K. and Lee, J., Safari, A., Appl. Phys. Lett. 61, 157 (1992).Google Scholar
6) Ramesh, R., Sands, T., Keramidas, V. G. and Fork, D. K., Mater. Sci. Eng. B22, 283 (1994).Google Scholar
7) Hiratami, M., Okazaki, C., Imagawa, K. and Takagi, K. Jap. J. Appl. Phys. 5 (1996) 6212.Google Scholar
8) Wu, X. P., Foltyn, S. R., Dye, R. C., Coulter, Y., Muenchausen, R.E. Appl. Phys. Lett., 62 1993) 244.Google Scholar
9) Watanabe, K., Ami, M. and Tanaka, M., Mater. Res. Bulletin 2 (1997) 8.Google Scholar
10) Yang, C. C., Chen, M. S., Hong, T. J., Wu, C. M., Wu, J. M. and Wu, T. B., Appl. Phys. Lett. 66, 2643 (1995).Google Scholar
11) Jia, O. X., Wu, X. D., Foltyn, S. R. and Tiwari, P., Appl. Phys. Lett. 66 (1995) 2197.Google Scholar
12) Tseng, T. F., Yang, R. P.. Liu, K. S. and Lin, I. N., Appl. Phys. Lett. 70, 46 (1997).Google Scholar
13) Liu, K. S., Tseng, T.F. and Lin, I. N., Appl. Phys. Lett. 72, 1182 (1998).Google Scholar
14) Tseng, Y. K., Lin, K. S., Jiang, J. D. and Lin, I. N., Appl. Phys. Lett. 72, 285 (1998).Google Scholar