Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-15T01:04:28.056Z Has data issue: false hasContentIssue false

Effect of Sulfur Surface Structure on Nucleation of Oxide Seed Layers on Textured Metals for Coated Conductor Applications

Published online by Cambridge University Press:  18 March 2011

C. Cantoni
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, TN 37831
D. K. Christen
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, TN 37831
A. Goyal
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, TN 37831
L. Heatherly
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, TN 37831
G. W. Ownby
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, TN 37831
D. M. Zehner
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, TN 37831
D. P. Norton
Affiliation:
University of Florida, Department of Materials Science and Engineering, Gainesville, FL 32611
C. M. Rouleau
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, TN 37831
H. M. Christen
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, TN 37831
Get access

Abstract

We present a study of the {100}<100> biaxially textured Ni (001) surface and oxide seed layer nucleation by in situ reflection high-energy electron diffraction and Auger electron spectroscopy. Our observations revealed the existence of a c(2×2) superstructure on the textured Ni surface due to segregation of sulfur contained in the bulk metal. The sulfur superstructure promotes the epitaxial (002) nucleation of seed layers such as Y2O3-stabilized ZrO2 (YSZ) and CeO2 on the metal and optimizes the biaxial texture necessary for high Jc superconductors on RABiTS.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Goyal, A., Feenstra, R., List, F. A., Paranthaman, M., Lee, D. F., Kroeger, D. M., Beach, D. B., Morell, J. S., Chirayil, T. G., Verebelyi, D. T., Cui, X., Specht, E. D., Christen, D. K., and Martin, P. M., JOM 51, 19 (1999)Google Scholar
2. Goyal, A., Feenstra, R., List, F. A., Paranthaman, M., Lee, D. F., Kroeger, D. M., Beach, D. B., Morell, J. S., Chirayil, T. G., Verebelyi, D. T., Cui, X., Specht, E. D., Christen, D. K., and Martin, P. M., JOM 51, 19 (1999)Google Scholar
3. He, Q., Christen, D. K., Budai, J. D., Specht, E. D., Lee, D. F., Goyal, A., Norton, D. P., Paranthaman, M., List, F. A., and Kroeger, D. M., Physica C 275, 155 (1997)Google Scholar
4. Goyal, A., Ren, S. X., Specht, E. D., Kroeger, D. M., Feenstra, R., Norton, D., Paranthaman, M., Lee, D. F. and Christen, D. K., Micron 30, 463 (1999)Google Scholar
5. Cantoni, C., Christen, D. K., Heatherly, L., Goyal, A., Ownby, G. W., and Zehner, D. M., “Quantification and Control of the c(2×2)-S Superstructure on {100}<100> Ni for Optimization of YSZ, CeO2 And STO Seed Layers” unpublished+Ni+for+Optimization+of+YSZ,+CeO2+And+STO+Seed+Layers”+unpublished>Google Scholar
6. Patridge, A. and Tatlock, G. J., Scripta Met. et Mater. 26, 874 (1992)Google Scholar
7. Marcus, P. and Oudar, J., Mater. Sci. Eng. 42, 191 (1980)Google Scholar
8. Feenstra, R., Lindemer, T. B., Budai, J. D., and Galloway, M. D., J. Appl. Phys. 69(9), 6569 (1991)Google Scholar
9. Andersson, S., Surf. Sci. 79, 385 (1979)Google Scholar
10. Holloway, P., J. Vac. Sci. Technol. 18(2), 653 (1981)Google Scholar
11. Mitchell, D. F., Sewell, P. B., and Cohen, M., Surf. Sci. 61, 355 (1976)Google Scholar