Published online by Cambridge University Press: 28 February 2011
The effect of surface finish on the unlubricated sliding wear behavior of a 94% A12O3 ceramic material has been investigated using a reciprocatingright cylinder-on-flat tribometer. The surface finishes evaluated were produced using a combinationof SiC and diamond abrasive particles.
Profilometry was employed to characterize surface topography and x-ray diffraction was used to determine the residual stress associated with each finishing process.
The coefficients of friction and controlling wear mechanisms varied dramatically as the maximum asperity height was altered by different finishing techniques. Below a peak profile of 0.25 μm, the coefficient of friction varied between 0.60 and 0.75 due to preferential shearing of the siliceous binder phase which segregated at surfacial pores and grain boundaries. Binder adhesion in the sliding contact produced stick-slip frictional behavior. Surfaces with asperity heights in excess of 10 μin exhibited intergranularfracture or grain “pluck-out”. These surfaces contained minimal real areas of contact and yielded friction coefficients of 0.30 - 0.35. Removed alumina grains actedas hard abrasives in the contact zone and enhanced transgranular fracture by a lateral cracking mechanism. Evidence of crack propagation as a result of Mode II and Mode III shearloading was discovered at subsurface pore sites. The influences of microindentation hardness and fracture toughness are discussed in terms of their relative importances on the observed wear behavior.